PITHAPUR RAJAH'S GOVERNMENT COLLEGE(A)

KAKINADA

GROUP THEORY-SEM-III

By

G. PRASADA RAO Lecturer in Mathematics

GROUP THEORY

UNIT 1: GROUPS

Binary Operation – Algebraic structure – semi group-monoid – Group definition and elementary properties Finite and Infinite groups – examples – order of a group. Composition tables with examples.

UNIT 2: SUBGROUPS

Complex Definition – Multiplication of two complexes Inverse of a complex-Subgroup definition – examples-criterion for a complex to be subgroups.

Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups.

Co-sets and Lagrange's Theorem:

Co-sets Definition – properties of Co-sets–Index of subgroups of a finite groups–Lagrange's Theorem.

UNIT 3: NORMAL SUBGROUPS:

Definition of normal subgroup – proper and improper normal subgroup—Hamilton group – criterion for a subgroup to be a normal subgroup – intersection of two normal subgroups – Sub group of index 2 is a normal sub group – simple group – quotient group – criteria for the existence of a quotient group.

UNIT4: HOMOMORPHISM

Definition of homomorphism – Image of homomorphism elementary properties of homomorphism – Isomorphism – auto morphism definitions and elementary properties–kernel of a homomorphism – fundamental theorem on Homomorphism and applications.

UNIT 5: PERMUTATIONS AND CYCLIC GROUPS

 $\label{eq:continuous} Definition\ of\ permutation\ -\ permutation\ -\ Inverse\ of\ a\ permutation\ -\ cyclic\ permutations\ -\ transposition\ -\ even\ and\ odd\ permutations\ -\ Cayley's\ theorem.$

Definition of cyclic group – elementary properties – classification of cyclic groups.

Activities

Seminar/ Quiz/ Assignments/ Applications of Group Theory to Real life Problem / Problem Solving Sessions

Text Book

Modern Algebra by A.R. Vasishtha and A.K. Vasishtha, Krishna Prakashan Media Pvt. Ltd., Meerut.

Reference Books

- 1. Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing house.
- 2. Modern Algebra by M.L. Khanna, Jai Prakash and Co. Printing Press, Meerut
- 3. Rings and Linear Algebra by Pundir&Pundir, published by PragathiPrakashan

UNIT-1: GROUPS

INTRODUCTION: A group is commonly studied as an abstraction of the number systems and the system of permutations on set (i.e. the study of algebraic structures is called group)

 $\mathbb{N} = The \ set \ of \ natural \ numbers = \{1,2,3, \dots \dots \}$

 $\mathbb{Z} = The \ set \ of \ integers = \{... -3, -2, -1, 0, 1, 2, 3, \}$

 \mathbb{Z}^+ = The set of positive integers = {1,2,3,}

 \mathbb{Z}^- = The set of negative integers = {......-3, -2, -1}

 $\mathbb{Q} = The \ set \ of \ rational \ numbers = \{\frac{p}{q}/p \ , q \in \mathbb{Z} \ and \ q \neq 0\}$

$$= \{... - \frac{1}{2}, \frac{3}{2}, -\frac{2}{5}, \frac{3}{7}, ... \}$$

 $\mathbb{Q}^+ = \textit{The set of positive rational numbers} = \{\frac{1}{2}, \frac{3}{5} \dots \dots \}$

 $\mathbb{R} - \mathbb{Q} = \textit{The set of irrational number} = \{\sqrt{2}, \sqrt{3}, \sqrt{5}, \pi \, e, \dots \dots \}$

 $\mathbb{R} = The \ set \ of \ real \ numbers = \mathbb{N} \ \cup \ \mathbb{Z} \ \cup \ \mathbb{Q} \ \cup \ \mathbb{R} - \mathbb{Q}$

 $\mathbb{R}^+ = \mathit{The}\;\mathit{set}\;\mathit{of}\;\mathit{positive}\,\mathit{real}\;\mathit{numbers}$

 $\mathbb{Q}_0 = \mathbb{Q} - \{0\} =$ The set of non – zero rational numbers

 $\mathbb{R}_0 = \mathbb{R} - \{0\} =$ The set of non – zero real numbers

 $\mathbb{C} = \{x + iy / , y \in \mathbb{R} \ and \ i^2 = -1\}$

Non-empty set: A set contains at least one element is called non-empty set.

Ex: $A = \{1, -1, 2, 3, 5, 8, \}$ is a finite set.

Prime number: A number P (>1) which divides 1 and itself is called as a prime number.

Ex: Prime numbers are 2, 3, 5, 7

Composite number: A number P (>1) which is not a prime number is called as a composite number.

Ex: Composite numbers are 4, 6, 8, 9......

Note: 1 is neither a prime number nor a composite number

2 is the only even prime

Binary operation (closure property): A non-empty set G with a operation $(*: G \times G \to G)$ is said to be a binary operation if $a * b \in G$ $\forall a, b \in G$

Ex:
$$(i)(\mathbb{N}, +): 1 + 2 = 3 \in \mathbb{N}; 2 + 4 \in \mathbb{N}$$

Let $a, b \in \mathbb{N}$, $a + b \in \mathbb{N} \Longrightarrow' +' is a binary operation on <math>\mathbb{N}$.

- $(ii)(\mathbb{N},-)$ is not a binary opertion because Let a=1,b=2 now $a-b=-1\notin\mathbb{N}$
- $(iii)(\mathbb{N},\times)$ is a binary opertion. Let $a,b\in\mathbb{N}\Rightarrow ab\in\mathbb{N}$

$$(iv)(\mathbb{N},\div)$$
 is not a binary operation because Let $a=1,=2$ now $a\div b=2$

Hence $(\mathbb{N}, +)$, (\mathbb{N}, \times) are binary operations but $(\mathbb{N}, -)$, (\mathbb{N}, \div) are not binary operations.

$$(\mathbb{Z},+),(\mathbb{Z},-),(\mathbb{Z},\times)$$
 are binary operations but, (\mathbb{Z},\div) is not binary operation

$$(\mathbb{Q},+),(\mathbb{Q},-),(\mathbb{Q},\times),(\mathbb{Q},\div)$$
 are binary operations

Algebraic system: A non-empty set G is said to be algebraic system if it contains one or more binary operations.

Ex:
$$(i)$$
 $(\mathbb{N}, +), (\mathbb{Z}, -), (\mathbb{Q}, +), (\mathbb{R}, +)$ (ii) $(\mathbb{N}, +, \times), (\mathbb{Z}, +, -), (\mathbb{Q}, +, -, \times), (\mathbb{R}, +, -, \times, \div)$

Groupoid: A non-empty set G is said to be groupoid if it contains a binary operation.

Remark: 1. Every groupoid is always an algebraic system but an algebraic system need not be groupoid.

Associative property: A non-empty set G with a binary operation * is said to be associative if $(a*b)*c = a*(b*c) \ \forall a,,c \in G$

Ex:

- (i) $(\mathbb{N},+)$, (\mathbb{N},\times) are all satisfies associative property. but $(\mathbb{Z},-)$ is not an associative
- (ii) The set of all matrices is an associative under addition and multiplication.

$$i.e.(i) A + (B + C) = (A + B) + C(ii) A(BC) = (AB)C \quad \forall A, B, C$$

(iii) The set of all complex numbers is an associative under addition and multiplication.

$$i. e. (i) z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3 (ii) z_1 (z_2 z_3) = (z_1 z_2) z_3 \quad \forall z_1, z_2, z_3 \in \mathbb{C}$$

- 3. Composition of mapping is an associative i. e. $(f \circ g) \circ h = f \circ (g \circ h) \forall f, g, h$
- 4. (\mathbb{Q} , –) is not associative. Since 3, -4, 6, $\in \mathbb{Q} \Rightarrow 3 (-4 6) = (3 (-4)) 6 \Rightarrow 13 \neq 1$.

Semi group: A non - empty set G with a binary operation * is said to be a semi group if it satisfies associative property.

Ex: 1. $(\mathbb{N}, +)$, (\mathbb{N}, \times) are all semi groups.

2. $(\mathbb{Q}, -)$ is not semi group

Identity property: Let G be non—empty set and * be a binary operation on G then there exist an element $e \in G$ such that $a * e = a = e * a \quad \forall a \in G$ Here 'e' is called the identity element

Remark: (i) If *= + (Addition) then '0' is the additive identity. i.e. $a + 0 = 0 + a = a \forall a \in G$

(ii) If $* = \times$ (Multiplication) then '1 'is the multiplicative identity i.e. a. 1 = 1. $a = a \forall a \in G$

Monoid: A non-empty set G is said to be Monoid if (i) * is a binary operation (ii) Associative property (iii) Identity property

Ex: $(i)(\mathbb{N}, +), (\mathbb{Z}, -)$ are not a Monoids

$$(ii)(\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{Q},\div), (\mathbb{R},+), (\mathbb{R},\times), (\mathbb{R},\div)$$
 are all a Monoids

Inverse property: Let G be non – empty set and * be a binary operation on G then for each $a \in G$ so there exist $b \in G$ such that a * b = e = b * a where e is identity element.

Remark:

- 1. -a is the additive inverse of a. since a + (-a) = 0 = (-a) + a.
- 2. a is the multiplicative inverse of a for $a \neq 0$ since $a \begin{pmatrix} a \end{pmatrix} = 1 = \begin{pmatrix} a \end{pmatrix}$ a.

3.
$$a * b = ab$$
, $\forall a, b \in R$, Identity = K, Inverse = ab , $\forall a \in R$, $a \neq 0$

GROUP: A non – empty set G with a operation * is said to be a group if it satisfies

- **1. Closure property:** $a * b \in G \ \forall a, b \in G$
- **2.** Associative property: $(a * b) * c = a * (b * c) \forall a, b, c \in G$
- **3. Identity property:** so $\exists e \in G \ni a * e = a = e * a \forall a \in G \text{ here } e \text{ is called the idntity}$
- **4.** Inverse property: For each $a \in G$ so $\exists b \in G$ such that a * b = e = b * a

here b is the inverse of a

Ex:(i) $(\mathbb{N}, +)$ is not a group as $0 \notin \mathbb{N}$

 $(ii)(\mathbb{N},\times)$ is not a group as inverse property is failure $(\because 2 \in \mathbb{N}, 2(\frac{1}{2}) = 1 \text{ but } \frac{1}{2} \notin \mathbb{N})$

 $(iii)(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ are all groups but (\mathbb{Z},\times) is not a group as inverse failure.

 $(iv)(\mathbb{Q},\times)$, (\mathbb{R},\times) are not groups as 0 does not has inverse.

(v) (\mathbb{Q}_0,\times), (\mathbb{R}_0,\times) are all groups

Note: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{Q}_0, \times), (\mathbb{R}_0, \times)$ are all groups

Commutative property: A non – empty set G with a operation * is said to be commutative if $a*b=b*a\in G \ \forall a,b\in G$

Abelian group: A group G is said to be an abelian group if it satisfies the commutative property.

Ex: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{Q}_0, \times), (\mathbb{R}_0, \times)$ are all abelian groups

Finite group: A group G is said to be finite group if number of elements in group is finite

Ex: (i) $G = \{1, -1\}, G = \{1, ,^2\}, G = \{1, -1, i, -i\}$ are all finite groups under multiplication.

Infinite group: A group G is said to be infinite group if number of elements in group is infinite

Ex: $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{Q}_0,\times), (\mathbb{R}_0,\times)$ are all infinite groups

Order of group: Number of elements in a group is called order of group. And it is denoted by o (G) or |G|

Ex: (i) $G = \{1, -1\}$ is a group under multiplication so (G) = 2

Problems:

1. Prove that the set of positive rational numbers form an abelian group under * is defined by a* $b = {}^{ab}$

Sol: G = The set of all positive rational numbers = \mathbb{Q}^+

and * is defined by $a*b = {}^{ab} \forall a, b \in \mathbb{Q}^+$

To prove that (G,*) is an abelian group

(i) Closure property: Let $a, b \in \mathbb{Q}^+ \Rightarrow ab \in \mathbb{Q}^+ \Rightarrow \frac{ab}{3} \in \mathbb{Q}^+ \Rightarrow a * b \in \mathbb{Q}^+$

∴
$$a * b \in G \ \forall a, b \in G$$

(ii) Associative property: Let $a, c \in \mathbb{Q}^+$

$$(a*b)*c = (\frac{ab}{3})*c = \frac{(\frac{ab}{3})c}{3} = \frac{abc}{9}$$
 and $a*(b*c) = a*(\frac{bc}{3}) = \frac{a(\frac{bc}{3})}{3} = \frac{abc}{9}$

$$\therefore (a*b)*c = a*(b*c) \quad \forall a,b,c \in G$$

(iii) Existence of identity: Let $a \in G$ and 'e' be the identity element

Now
$$a * e = a \Rightarrow ae = a \Rightarrow e = 3$$

Now
$$a * e = a * 3 = a$$
. Similarly we can prove $e * a = a \Rightarrow e^{a} = a \Rightarrow e = 3$

- ∴ The identity element is 3
- (iv) Existence of inverse: Let $a \in G$ and 'b' be the inverse of a

Now
$$a * b = e \Rightarrow ab = 3 \Rightarrow b = 9$$

The inverse of a is a so every element has invertiable

- (v) Commutative property: Let $a, \in G$ Now $a * b = {}^{ab} = {}^{ba} = b * a$
- $\therefore a*b=b*a \ \forall \ a,b\in G$
- \therefore (G,*) is an abelian group.
- 2. Prove that the set \mathbb{Z} of all integers form an abelian group w.r.t the operation defined by $a*b=a+b+2 \ \forall \ a_i \in \mathbb{Z}$

Sol: G = The set of all integers = \mathbb{Z}

and * is defined by
$$a*b = a + b + 2 \forall a, \in \mathbb{Z}$$

To prove that (G,*) is an abelian group

- (i) Closure property: Let $a, b \in \mathbb{Z} \implies a+b \in \mathbb{Z} \implies a+b+2 \in \mathbb{Z} \implies a*b \in \mathbb{Z}$
- $\therefore \mathbf{a} * b \in G \ \forall a,b \in G$
- (ii) Associative property: Let $a_i, c \in \mathbb{Z}$

$$(a*b)*c = (a+b+2)*c = (a+b+2)+c+2 = a+b+c+4$$

and
$$a*(b*c) = a*(b+c+2) = a+(b+c+2)+2 = a+b+c+4$$

$$\therefore (a*b)*c = a*(b*c) \qquad \forall a,b,c \in G$$

(iii) Existence of identity: Let $a \in G$ and 'e' be the identity element

Now
$$a * e = a \Rightarrow a + e + 2 = a \Rightarrow e = -2$$

Now a * e = a * (-2) = a + (-2) + 2 = a similarly we can prove

$$e * a = a \Longrightarrow e + a + 2 = a \Longrightarrow e = -2$$

- \therefore The identity element is -2
- (iv) Existence of inverse: Let $a \in G$ and 'b'be the inverse of a

Now
$$a * b = e \Rightarrow a + b + 2 = -2 \Rightarrow b = -4 - a$$

The inverse of a is -4-a so every element has invertiable

- (v) Commutative property: Let $a, b \in G$ Now a * b = a + b + 2 = b + a + 2 = b * a
- $\therefore a * b = b * a \ \forall \ a, b \in G$
- : (G,*) is an abelian group.
- 3. Prove that the set \mathbb{Z} of all integers form an abelian group w.r.t the operation defined by $a*b=a+b+1 \ \forall \ a_i \in \mathbb{Z}$

Sol: $G = \text{The set of all integers} = \mathbb{Z}$

and * is defined by
$$a*b = a + b + 1 \forall a, \in \mathbb{Z}$$

To prove that (G,*) is an abelian group

- (i) Closure property: Let $a, b \in \mathbb{Z} \implies a+b \in \mathbb{Z} \implies a+b+1 \in \mathbb{Z} \implies a*b \in \mathbb{Z}$
- $\therefore a * b \in G \ \forall a, b \in G$
- (ii) Associative property: Let $a, c \in \mathbb{Z}$

$$(a * b) * c = (a + b + 1) * c = (a + b + 1) + c + 1 = a + b + c + 2$$

and
$$a*(b*c) = a*(b+c+1) = a+(b+c+1)+1 = a+b+c+2$$

$$\therefore (a*b)*c = a*(b*c) \quad \forall a,b,c \in G$$

(iii) Existence of identity: Let $a \in G$ and 'e' be the identity element

Now
$$a * e = a \Rightarrow a + e + 1 = a \Rightarrow e = -1$$

Now a * e = a * (-1) = a + (-1) + 1 = a similarly we can prove

$$e * a = a \Rightarrow e + a + 1 = a \Rightarrow e = -1$$

- \therefore The identity element is -1
- (iv) Existence of inverse: Let $a \in G$ and b'be the inverse of a

Now
$$a * b = e \Rightarrow a + b + 1 = -1 \Rightarrow b = -2 - a$$

The inverse of a is -2-a so every element has invertiable

- (v) Commutative property: Let $a, \in G$ Now a * b = a + b + 1 = b + a + 1 = b * a
- $\therefore a * b = b * a \ \forall \ a, b \in G$
- : (G,*) is an abelian group.
- **4. P.T** the set *G* of rational (real) numbers other than 1 with operation
- $a \oplus b = a + b ab \quad \forall a, b \in G$ is an abelian group. Hence show that $x = \frac{1}{2}$ is a solution

of the equation
$$(4 \oplus 5) \oplus x = 7$$

Sol:
$$G = \mathbb{R} - \{1\}$$

and
$$\bigoplus$$
 is defined by $a \bigoplus b = a + b - ab \quad \forall a, b \in G$

To prove that (G, \bigoplus) is an abelian group

(i) Closure property: Let $a, b \in G$ where $a \neq 1 \in \mathbb{R}, \neq 1 \in \mathbb{R}$

since
$$a, \in G \implies a+b \in G$$
 and $ab \in G$ where $a+b-ab \neq 1$

$$\Rightarrow a + b - ab \in G \Rightarrow a \oplus b \in G$$

- $a \oplus b \in G \ \forall a, b \in G$
- (ii) Associative property: Let $a, c \in G$

$$(a \oplus b) \oplus c = (a+b-ab) \oplus c = (a+b-ab)+c-(a+b-ab)c$$

$$= a + b + c - ab - bc - ac + abc$$

Next
$$a \oplus (b \oplus c) = a \oplus (b+c-bc) = a + (b+c-bc) - a(b+c-bc)$$

$$= a + b + c - ab - bc - ac + abc$$

$$(a \oplus b) \oplus c = a(\oplus (b \oplus c)) \quad \forall a, b, c \in G$$

(iii) Existence of identity: Let $a \in G$ and 'e' be the identity element

Now
$$a \oplus e = a \Rightarrow a + e - ae = a \Rightarrow (1 - a) = 0 \Rightarrow e = 0$$
 since $a \neq 1$

Now $a \oplus e = a \oplus (0) = a + (0) - (0) = a$ similarly we can prove

$$e \oplus a = a \Rightarrow e + a - ea = a \Rightarrow (1 - a) = 0 \Rightarrow e = 0$$
 since $a \neq 1$

 \therefore The identity element is 0

(iv) Existence of inverse: Let $a \in G$ and b'be the inverse of a

Now
$$a \oplus b = e \Rightarrow a + b - ab = 0 \Rightarrow (1 - a) = -a \Rightarrow b = 1 - a = a - 1$$

The inverse of a is a_{n-1} so every element has invertiable

(v) Commutative property: Let $a, b \in G$ Now $a \oplus b = a + b - ab = b + a - ba = b \oplus a$

$$\therefore a \oplus b = b \oplus a \ \forall a, b \in G$$

 $: (G, \bigoplus)$ is an abelian group.

$$(4 \oplus 5) \oplus x = 7 \Longrightarrow (4 + 5 - 20) \oplus x = 7$$

$$\Rightarrow$$
 -11 \oplus $x = 7 \Rightarrow (-11 + x + 11 x) = 7 \Rightarrow 12 x = 18 \Rightarrow $x = \frac{1}{2}$$

5. P.T the set G of rational (real) numbers other than -1 with operation $a \oplus b = a + b + ab \ \forall a, \in G$ is an abelian group. Hence show that $x = -\frac{1}{3}$ is a solution of the equation $(2 \oplus x) \oplus 3 = 7$

Sol:
$$G = \mathbb{R} - \{-1\}$$

and
$$\bigoplus$$
 is defined by $a \bigoplus b = a + b + ab \ \forall a, b \in G$

To prove that (G, \bigoplus) is an abelian group

(i) Closure property: Let $a, b \in G$ where $a \neq -1 \in \mathbb{R}, b \neq -1 \in \mathbb{R}$

since
$$a, \in G \implies a+b \in G$$
 and $ab \in G$ where $a+b+ab \neq 1$

$$\Rightarrow a + b + ab \in G \Rightarrow a \oplus b \in G$$

$$a \oplus b \in G \ \forall a, b \in G$$

(ii) Associative property: Let $a, c \in G$

$$(a \oplus b) \oplus c = (a+b+ab) \oplus c = (a+b+ab)+c+(a+b+ab)c$$

$$= a + b + c + ab + bc + ac + abc$$

Next
$$a \oplus (b \oplus c) = a \oplus (b+c+bc) = a + (b+c+bc) + a(b+c+bc)$$

$$= a + b + c + ab + bc + ac + abc$$

$$(a \oplus b) \oplus c = a(\oplus (b \oplus c)) \quad \forall a, b, c \in G$$

(iii) Existence of identity: Let $a \in G$ and 'e' be the identity element

Now
$$a \oplus e = a \Rightarrow a + e + ae = a \Rightarrow (1 + a) = 0 \Rightarrow e = 0$$
 since $a \neq -1$

Now
$$a \oplus e = a \oplus (0) = a + (0) + (0) = a$$
 similarly we can prove

$$e \oplus a = a \Rightarrow e + a + ea = a \Rightarrow (1 + a) = 0 \Rightarrow e = 0$$
 since $a \neq -1$

 \therefore The identity element is 0

(iv) Existence of inverse: Let $a \in G$ and b'be the inverse of a

Now
$$a \oplus b = e \Rightarrow a + b + ab = 0 \Rightarrow (1 + a) = -a \Rightarrow b = 1 + a$$

The inverse of a is a+1 so every element has invertiable

(v) Commutative property: Let $a, b \in G$ Now $a \oplus b = a + b + ab = b + a + ba = b \oplus a$

$$\therefore a \oplus b = b \oplus a \ \forall \ a, b \in G$$

 $: (G, \bigoplus)$ is an abelian group.

$$(2 \oplus x) \oplus 3 = 7 \Rightarrow (2 + x + 2x) \oplus 3 = 7$$

$$\Rightarrow$$
 (2 + 3x) \oplus 3 = 7 \Rightarrow [(2 + 3x) + 3 + 3(2 + 3x)] = 7

$$\Rightarrow$$
 [2 + 3x + 3 + 6 + 9x] = 7

$$\Rightarrow$$
 12x + 11 = 7 \Rightarrow 12x = -4 \Rightarrow x = - $\frac{1}{3}$

6. P.T the set of matrices $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ where $\alpha \in \mathbb{R}$ forms a group w.r.t. matrix multiplication if $\cos \theta = \cos \varphi \Rightarrow \theta = \varphi$. Is it abelian?

Sol:
$$G = \{A_{\alpha}/\alpha \in \mathbb{R} \text{ and } A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}\}$$

To prove that (G, \cdot) is a group

(i) Closure property: $Le , \in G$

where
$$A_{\alpha} = \begin{bmatrix} -\sin\alpha \end{bmatrix}$$
 and $A_{\beta} = \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix}$

$$NowA_{\alpha} \cdot A_{\beta} = \begin{bmatrix} -sin\alpha & cos\beta & -sin\beta & cos(\alpha + \beta) & -sin(\alpha + \beta) \\ sin\alpha & cos\alpha & sin\beta & cos\beta & sin(\alpha + \beta) & cos(\alpha + \beta) \end{bmatrix} \alpha + \beta$$

since $\alpha, \beta \in \mathbb{R} \Longrightarrow \alpha + \beta \in \mathbb{R}$

- ∴ · is a binary operation on G
- : G has closed under multiplication
- (ii) Associative property: A_{α} , A_{β} , $A_{\gamma} \in G$ where $\alpha, \beta, \gamma \in \mathbb{R}$

$$(A_{\alpha}\cdot A_{\beta})\cdot A_{\gamma}=(A_{\alpha+\beta})\cdot A_{\gamma}=A_{(\alpha+\beta)+\gamma}$$

$$=A_{\alpha+(\beta+\gamma)}=A_{\alpha}\cdot A_{(\beta+\gamma)}=A_{\alpha}\cdot (A_{\beta}\cdot A_{\gamma})$$

- ∴ · is an associative on G
- (iii) Existence of identity: $Let A_{\alpha}$ where $\alpha \in \mathbb{R}$

we have
$$A_0 = \begin{bmatrix} -\sin 0 & 1 \\ \sin 0 & \cos 0 & 0 \end{bmatrix}$$

Now
$$A_{\alpha} \cdot A_0 = A_{\alpha+0} = A_{\alpha}$$

also
$$A_0 \cdot A_{\alpha} = A_{0+\alpha} = A_{\alpha}$$

- \therefore The identity element is $\begin{bmatrix} 0 & 1 \end{bmatrix}$
- (iv) Existence of inverse: $Let A_{\alpha}$ where $\alpha \in \mathbb{R}$

$$since \ \alpha \in \mathbb{R} \ \Longrightarrow -\alpha \in \mathbb{R} \ \Longrightarrow \ A_{-\alpha} \in G$$

Now
$$A_{\alpha} \cdot A_{-\alpha} = A_{\alpha+(-\alpha)} = A_0$$

also
$$A_{-\alpha} \cdot A_{\alpha} = A_{-\alpha+(\alpha)} = A_0$$

 $A_{-\alpha}$ is the inverse of A_{α}

- \therefore Every element in G has multiplicative inverse.
- $: (G, \cdot)$ is an abelian group.
- (v) Commutative property: $Le \in G$

Now
$$A_{\alpha} \cdot A_{\beta} = A_{\alpha+\beta} = A_{\beta+\alpha} = A_{\beta} \cdot A_{\alpha}$$

$$A_{\alpha} \cdot A_{\beta} = A_{\beta} \cdot A_{\alpha} \ \forall A_{\alpha} , A_{\beta} \in G$$

- $: (G, \cdot)$ is an abelian group.
- 7. If G is the set of even integers i.e. $G = \{.....-4, -2, 0, 2, 4,\}$ then prove that G is an abelian group w.r.t addition as the operation.

Sol:
$$G = \{..., -4, -2, 0, 2, 4, ..., \} = \{2n/n \in \mathbb{Z}\} = Set \ of \ Even \ integers$$

To prove that (G, +) is an abelian group

(i) Closure property: Let $a, b \in G$ then a = 2n, = 2m where $n, \in \mathbb{Z}$

$$\Rightarrow a + b = 2n + 2m = 2(n + m) = 2l \in G \text{ where } l = m + n \in \mathbb{Z}$$

$$\Rightarrow$$
 a + b \in G

$$\therefore$$
 a + b \in G $\forall a$, \in G

(ii) Associative property: Let $a, c \in G$ then a = 2n, b = 2m, c = 2p where $n, m, p \in \mathbb{Z}$

$$(a + b) + c = (2n + 2m) + 2p = 2[(n + m) + p]$$

$$= 2[(n + (m + p))] = 2n + (2m + 2p) = a + (b + c)$$

$$\therefore (a+b)+c=a+(b+c) \quad \forall a,b,c \in G$$

(iii) Existence of identity: Let $a \in G$ then a = 2n where $n \in \mathbb{Z}$

we have $2(0) \in G$

Now
$$a + e = 2n + 2(0) = 2(n + 0) = 2n = a$$

- \therefore The identity element is 2(0) = 0
- (iv) Existence of inverse: Let $a \in G$ then a = 2n where $n \in \mathbb{Z}$

since
$$n \in \mathbb{Z} \Longrightarrow -n \in \mathbb{Z} \Longrightarrow -2n \in \mathbb{Z} \Longrightarrow -a \in G$$

now
$$a + (-a) = 2n - 2n = 2(0) = 0$$

The inverse of a is -a

- \therefore Every element in G has additive inverse.
- (v) Commutative property: Let $a, b \in G$

Now
$$a + b = 2n + 2m = 2m + 2n = b + a$$

$$\therefore a + b = b + a \ \forall \ a, b \in G$$

 \therefore (G, +) is an abelian group

8. S.T the set $G = \{x/x = 2^a 3^b \text{ and } a, \in \mathbb{Z}\}$ is an abelian group under multiplication.

Sol:
$$G = \{x/x = 2^a 3^b \text{ and } a, b \in \mathbb{Z}\}$$

To prove that (G, \cdot) is an abelian group

(i) Closure property: Let $x, y \in G$ then $x = 2^a 3^b, y = 2^c 3^d$ where $a, b, d \in \mathbb{Z}$

$$\Rightarrow xy = (2^a 3^b)(2^c 3^d) = 2^{a+c} 3^{c+d} = 2^l 3^m \in G \text{ since } l = a+c \in \mathbb{Z}, m=c+d \in \mathbb{Z}$$

 $= 2^a 3[(2^c 3^d)(2^e 3^f)] = x(yz)$

$$\Rightarrow$$
 xy \in G \therefore xy \in G $\forall x, y \in$ G

(ii) Associative property:

Let
$$x, y, \in G$$
 then $x = 2^a 3^b, = 2^c 3^d, = 2^e 3^f$ where $a, b, c, d, e, f \in \mathbb{Z}$

$$(xy)z = [(2^a 3^b)(2^c 3^d)]2^e 3^f = 2^{(a+c)+e} 3^{(b+d)+f}$$
$$= 2^{a+(c+e)} 3^{b+(d+f)}$$
$$= 2^a 3[(2^{c+e} 3^{d+f})]$$

$$\therefore (xy)z = x(yz) \qquad \forall x, y, z \in G$$

(iii) Existence of identity: Let $x \in G$ then $x = 2^a 3^b$ where $a, b \in \mathbb{Z}$

we have $1 = 2^0 3^0 \in G$ since $0 \in \mathbb{Z}$

Now
$$x \cdot 1 = (2^a 3^b)(2^0 3^0) = 2^{a+0} 3^{b+0} = 2^a 3^b = x$$

- $\therefore \textit{The identity element is } 1 = 2^0 3^0$
- (iv) Existence of inverse: Let $x \in G$ then $x = 2^a 3^b$ where $a, b \in \mathbb{Z}$

since
$$a, \in \mathbb{Z} \Longrightarrow -a, -b \in \mathbb{Z} \Longrightarrow 2^{-a}3^{-b} \in G$$

now
$$x \cdot (2^{-a}3^{-b}) = (2^a3^b)(2^{-a}3^{-b}) = 2^{a-a}3^{b-b} = 2^03^0$$

The inverse of 2^a3^b is $2^{-a}3^{-b}$

- ∴ Every element in G has multiplicative inverse.
- v) Commutative property: Let $x_i \in G$ then $x = 2^a 3^b$, $= 2^c 3^d$ where $a_i, c_i, d \in \mathbb{Z}$

$$\Rightarrow xy = (2^a 3^b)(2^c 3^d) = 2^{a+c} 3^{c+d} = 2^{c+a} 3^{d+c} = (2^c 3^d)(2^a 3^b) = yx$$

$$\therefore xy = yx \ \forall x, y \in G$$

 \therefore (*G*,·) is an abelian group

9. S.T the set $G = \{\dots \dots 2^{-3}, 2^{-2}, 2^{-1}, , 2^1, 2^2, 2^3 \dots \dots \}$ is an abelian group under multiplication.

Sol:
$$G = \{... ... 2^{-3}, 2^{-2}, 2^{-1}, 1, 2^1, 2^2, 2^3 \} = \{2^n/n \in \mathbb{Z}\}$$

To prove that (G, \cdot) is an abelian group

(i) Closure property: Let $x, y \in G$ then $x = 2^a$, $y = 2^b$ where $a, \in \mathbb{Z}$

$$\Rightarrow xy = (2^a 2^b) = 2^{a+b} = 2^l \in G \text{ since } l = a+b \in \mathbb{Z},$$

$$\Rightarrow$$
 xy \in G \therefore xy \in G $\forall x, y \in$ G

(ii) Associative property:

Let $x, y, \in G$ then $x = 2^a, y = 2^b, = 2^c$ where $a, b, \in \mathbb{Z}$

$$(xy)z = (2^{a}2^{b})2^{c} = [2^{(a+b)}]2^{c} = 2^{a+(b+c)}$$
$$= 2[2^{b+c}]$$
$$= 2(2^{b}2^{c})$$
$$= x(yz)$$

$$\therefore (xy)z = x(yz) \qquad \forall x,y,z \in G$$

(iii) Existence of identity: Let $x \in G$ then $x = 2^a$ where $a \in \mathbb{Z}$

we have $1 = 2^0 \in G$ since $0 \in \mathbb{Z}$

Now
$$x \cdot 1 = (2^a)(2^0) = 2^{a+0} = 2^a = x$$

 \therefore The identity element is $1 = 2^0$

(iv) Existence of inverse: Let $x \in G$ then $x = 2^a$ where $a \in \mathbb{Z}$

since
$$a \in \mathbb{Z} \Longrightarrow -a \in \mathbb{Z} \Longrightarrow 2^{-a} \in G$$

now
$$x \cdot (2^{-a}) = (2^a)(2^{-a}) = 2^{a-a} = 2^0$$

The inverse of 2^a is 2^{-a}

- ∴ Every element in G has multiplicative inverse.
- (v) commutative property: Let $x, y \in G$ then $x = 2^a, y = 2^b$ where $a, b \in \mathbb{Z}$

$$\Rightarrow xy = (2^a)(2^b) = 2^{a+b} = 2^{b+a} = (2^b)(2^a) = yx$$

- $\therefore xy = yx \ \forall x, y \in G$
- \therefore (G_{i}) is an abelian group
- 10. S.T the set of all ordered pairs (a, b) of real numbers for which $a \neq 0$ w.r.t the operation \times defined by $(a, b) \times (c, d) = (ac, bc + d)$ is a group.

Is the group commutative?

Sol:
$$G = \{(a, b) \mid a \neq 0 \in \mathbb{R}, b \in \mathbb{R}\}$$

The operation \times defined by $(a, b) \times (c,) = (ac, bc + d)$

To prove that (G,\times) is a group

- (i) Closure property: Let $(a,b),(c,d) \in G$ where $a \neq 0 \in \mathbb{R}, c \neq 0 \in \mathbb{R}$
- \Rightarrow $(a,) \times (c,d) = (ac,+d) \in G \text{ since } a \neq 0 \in \mathbb{R}, c \neq 0 \in \mathbb{R} \Rightarrow ac \neq 0 \in \mathbb{R}$
- \Rightarrow $(a,b) \times (c,d) \in G$
- $(a,b) \times (c,d) \ \forall x,y \in G$

(ii) Associative property:

Let
$$(a, b), (c, d), (e, f) \in G$$
 where $a \neq 0 \in \mathbb{R}, c \neq 0 \in \mathbb{R}, e \neq 0 \in \mathbb{R}$,

$$[(a,b) \times (c,d)] \times (e,f) = (ac,bc+d) \times (e,f) = [(ac)e,(bc+d)e+f]$$

= (ace, bce + de + f)

Next
$$(a,) \times [(c,) \times (e,f)] = (a,b) \times (ce,de+f) = ((ce),bce+de+f)$$

= (ace, bce + de + f)

$$[(a,b)\times(c,d)]\times(e,f)=(a,b)\times[(c,d)\times(e,f)]$$

(iii) Existence of identity: Let $(a, b) \in G(x, y)$ be the identity in G

Now
$$(a,b) \times (x,y) = (a,b) \Longrightarrow (ax,bx+y) = (a,b)$$

$$\Rightarrow ax = a, bx + y = b \Rightarrow x = 1, y = 0$$

- \therefore The identity element is (1,0)
- (iv) Existence of inverse: Let $(a, b) \in G(c, d)$ be the inverse in G

$$(a,b) \times (c,d) = (1,0) \Longrightarrow (ac,bc+d) = (1,0)$$

$$\Rightarrow$$
 $ac = 1, bc + d = 0 \Rightarrow c = , -b (-) = d$

$$(c,d) = \binom{a}{a} - \binom{a}{a}$$
 is the inverse of (a,b)

- ∴ Every element in G has inverse.
- (v) Commutative property: Let $(a, b), (c, d) \in G$ where $a \neq 0 \in \mathbb{R}, c \neq 0 \in \mathbb{R}$

$$\Rightarrow$$
 $(a,b) \times (c,d) = (ac,bc+d)$

$$\Rightarrow$$
 $(c,d) \times (a,b) = (ca,da+b)$

$$\therefore$$
 $(a,b) \times (c,d) \neq (c,d) \times (a,b)$

- \therefore (G,×) is not an abelian group
- 11. P.T the set of n^{th} root of unity under multiplication forms a finite abelian group. (OR)

P.T the set $G = \{a/a^n = 1\}$ er multiplication form a finite abelian group.

Sol:
$$G = \{x/x = \sqrt{1}\} = \{x/x = 1^n\} = \{x/x^n = 1\}$$

we have
$$1 = cos0 + isin0 = cos2\pi + isin2\pi$$

$$= cos2k\pi + isin2k\pi \text{ where } k = 0,1,2,...n-1$$

$$x = 1^{\frac{1}{n}} = \left(\cos 2k\pi + i\sin 2k\pi\right)^{\frac{1}{n}}$$

$$\Rightarrow x = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right) = e^{i\left(\frac{2k\pi}{n}\right)} \quad where \ k = 0,1,2,...n-1$$

$$G = \{1,,^2, \dots \omega^{n-1}\}$$
 where $\omega = e^{i(^{2\pi})} \Rightarrow \omega^n = 1$

To prove that (G, \cdot) is an abelian group

(i) Closure property: Let $a, b \in G$ then $a^n = 1$, $b^n = 1$

$$now(ab) = a^n b^n = 1.1 = 1$$

$$\therefore (ab) = 1 \Longrightarrow ab \in G \ \forall a, b \in G$$

- (ii) Associative property: Since all elements in G are complex numbers and hence multiplication is associative in G
- (iii) Existence of identity: Let $\omega^r \in G$ where $0 \le r \le n-1$

we have
$$1 = \omega^0 \in G$$

Now
$$\omega^r \cdot \omega^0 = \omega^{r+0} = \omega^r$$

- \therefore The identity element is $1 = \omega^0$
- (iv) Existence of inverse: we have 1.1=1

Let $\omega^r \in G$ be any element of G where r = 1, 2, ..., n-1

$$::\omega^{n-r}\in G$$

$$now \ \omega^r \cdot \omega^{n-r} = \omega^n = 1$$

The inverse of ω^r is ω^{n-r}

- ∴ Every element in G has multiplicative inverse.
- (v) Commutative property: Let $a, \in G$ then $a = \omega^r, b = \omega^s$ where $0 \le r, \le n-1$

$$\Rightarrow ab = \omega^r \omega^s = \omega^{r+s} = \omega^{s+r} = \omega^s \omega^r = ba$$

∴ ab = ba
$$\forall a, b \in G$$

- \therefore (G,·) is finite an abelian group
- 12. P.T the set of 4^{th} root of unity under multiplication forms a finite group. (OR)
- **P.T** the set $G = \{1, -1, i, -i\}$ under multiplication form a finite abelian goup.

Sol:
$$G = \{x/x = \sqrt[4]{1}\} = \{x/x = 1^{\frac{1}{4}}\} = \{x/x^4 = 1\} = \{1, -1, -i\}$$

To prove that (G, \cdot) is an abelian group

Construct a composition table for G under multiplication

(i) Closure property: We observe that all elements in C.T are the elements of G. \therefore is a binary operation on G.

•	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

- (ii) Associative property: From C.T we observe that all the elements are complex numbers and hence multiplication is associative
- (iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the top row of C.T. \therefore 1 is the identity element in G.
- (iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each row.

The inverse of 1, -1, i, -i are 1, -1, -i, i respectively.

- ∴ Each element in G has multilicative inverse
- (v) Commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence (G,\cdot) is finite an abelian group.
- 13. P.T the set of cube root of unity under multiplication forms a finite group. (OR)
- P.T the set $G = \{1, \omega^2\}$ under multiplication form a finite abelian group.

Sol:
$$G = \{x/x = \sqrt[3]{1}\} == \{x/x^3 = 1\} = \{1, \omega^2\}$$

To prove that (G, \cdot) is an abelian group

Construct a composition table for G under multiplication

(i) Closure property: We observe that all elements in C.T are the elements of G. : is a binary operation on G.

•	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

- (ii) Associative property: From C.T we observe that all the elements are complex numbers and hence multiplication is associative
- (iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the top row of C.T. \therefore 1 is the identity element in G.

A

 \boldsymbol{A}

В

D

Α

В

C

D

В

Α

D

 $\overline{\mathcal{C}}$

 \mathcal{C}

 \mathcal{C}

D

В

D

D

 \mathcal{C}

Α

(iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each row.

The inverse of are 1, ω , ω^2 are 1, 2 , ω respectively.

- ∴ Each element in G has multilicative inverse
- (v) Commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence (G,\cdot) is finite an abelian group.
- 14. P.T the set of square root of unity under multiplication forms a finite group. (OR)
- P.T the set $G = \{1, -1\}$ under multiplication form a finite abelian group

15. S.T
$$G = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \}$$
 is a group w.r.t matrix multiplication.

Find the identity and the inverse of every element

Sol:
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & -0 \\ 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & -0 \\ 0 & 1 \end{bmatrix}$

To show that $G = \{A, B, D\}$ is a group under multiplication.

Construct a composition table for G under multiplication

- (i) Closure property: We observe that all elements in C.T are the elements of G. \therefore is a binary operation on G.
- (ii) Associative property: From C.T we observe that all the elements are complex numbers and hence multiplication is associative
- (iii) Existence of identity: From C.T we observe that the row headed by A is coincide with the top row of C.T. \therefore A is the identity element in G.
- (iv) Existence of inverse: From C.T we observe that the identity elements A contains in each row.

The inverse of A, B,, D are A, B, C, D respectively.

- \therefore Each element in G has multilicative inverse $Th(G,\cdot)$ is a group
- (v) Commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence (G,\cdot) is finite an abelian group.

Klein-4 group: A group of order 4 whose every element is its own inverse is called kleins-4 group Ex: The above group is kleins-4 group

Cancellation laws: Let G be a non-empty set and * be a binary operation on G. For each a, b, c, c then (i) $a*b=a*c\Rightarrow b=c$ left cancellation laws and(ii) $b*a=c*a\Rightarrow b=c$ right cancellation laws

Theorem1: In a group (G_i) cancellation laws holds

Proof: Given that (G,\cdot) is a group. Let $a \in G$ so $\exists a^{-1} \in G \ni aa^{-1} = e = a^{-1}a$

Let $a, b, c \in G$

Now ab = ac

Multiplying with a^{-1}

$$\Rightarrow a^{-1}(ab) = a^{-1}(ac)$$

$$\Rightarrow$$
 $(a^{-1}) = (a^{-1}a)c$ [·is associative]

$$\Rightarrow eb = ec \Rightarrow b = c$$
 $\begin{bmatrix} -1 = e = a^{-1}a \end{bmatrix}$

$$\therefore ab = ac \implies b = c \ (left \ cancellation)$$

Similarly:

Let $a, b, c \in G$

Now
$$ba = ca \Longrightarrow (ba)^{-1} = (ca)a^{-1} \Longrightarrow b(aa^{-1}) = c(aa^{-1}) \Longrightarrow be = ce \Longrightarrow b = c$$

$$\therefore ba = ca \Rightarrow b = c \ (right \ cancellation)$$

Theorem2: The identity element in group (G, \cdot) is unique.

Proof: Given that (G, \cdot) is a group

If possible suppose that e_1 , e_2 be two identities in (G, \cdot)

Since e_1 is the identity element $: e_2e_1 = e_2 = e_1e_2 \longrightarrow (1)$

Also e_2 is the identity element $: e_1e_2 = e_1 = e_2e_1 \longrightarrow (2)$

Now
$$e_2 = e_1 e_2$$
 from (1)
= e_1 f(2)

$$e_2 = e_1$$

 \therefore The identity element in group (G,\cdot) is unique

Theorem 3: Every element in a group(G_i) has unique inverse

Proof: Given that (G, \cdot) is a group. Let $a \in G$, e be the identity element in G. If possible suppose that a have two invertible elements b, c.

Since a is the inverse of 'c' \therefore ac=e=ca(1)

Also a is the inverse of 'b' \therefore ab=e=ba(2)

From (1) and (2) $ac=ab \implies c=b$ (: By left cancellation law)

∴ 'a' has unique inverse.

It follows that every element in a group \boldsymbol{G} has unique inverse.

Theorem4: If (G, \cdot) is a group then $(ab)^{-1} = b^{-1}a^{-1} \quad \forall a, b, \in G$

Proof: Given that (G, \cdot) is a group. Let $a, b \in G$,

Let a^{-1} be the multiplicative inverse of 'a' $\Rightarrow aa^{-1} = e = a^{-1}a$

Let b^{-1} be the multiplicative inverse of 'b' $\Longrightarrow b b^{-1} = e = b^{-1}b$

Claim: $(ab)^{-1} = b^{-1}a^{-1}$

Now (ab) $(b^{-1}a^{-1}) = [(ab)b^{-1}]a^{-1}$ (: · is an associative)

$$= [a(bb^{-1})] a^{-1}$$
 (Again · is an associative)

$$= [ae]a^{-1}$$

$$= aa^{-1} = e$$
 (e is the identity element)

$$\therefore$$
 $(b^{-1}a^{-1})(ab) = e$ -----(2)

From (1) & (2)
$$(\mathbf{b}^{-1}\mathbf{a}^{-1})(\mathbf{a}\mathbf{b}) = \mathbf{e} = (ab)(b^{-1}a^{-1})$$

$$\Rightarrow (ab)^{-1} = \mathbf{b}^{-1}\mathbf{a}^{-1}$$

$$\div \quad (ab)^{-1} = b^{-1}a^{-1} \quad \forall \text{ a, b, } \in G$$

Theorem5: In group (G, \cdot) for $x, y, a, b, \in G$ then the equations ax=b and ya=b have a unique solution.

Proof: Given that (G, \cdot) is a group. Let a, b $\in G$,

Since a, b \in G ax = b

$$\Rightarrow a^{-1}(ax) = a^{-1}b$$

$$\Rightarrow$$
 $(a^{-1}a) = a^{-1}b$

$$\Rightarrow ex = a^{-1}b$$

$$\Rightarrow x = a^{-1}b$$

But if
$$x = a^{-1}b$$

Now
$$ax = b$$

$$\Rightarrow$$
 $(a^{-1}b) = b$

$$\Rightarrow$$
 $(aa^{-1}) = b$

$$\Rightarrow eb = b$$

$$\Rightarrow b = b$$

 $x = a^{-1}b$ is the solution of the equation ax=b.

Uniqueness part: If possible suppose that x_1 , be two solutions of ax=b,

$$ax_1 = b$$
 and $ax_2 = b$

$$\Rightarrow ax_1 = ax_2$$

$$\Rightarrow x_1 = x_2$$
 (By left cancellation law)

∴ Solution is unique.

Similarly $y = ba^{-1}$ is the solution of ya =b.

If possible suppose that y_1, y_2 be the solution of ya=b.

$$\therefore y_1a = b \ and \ y_2a = b$$

$$\Rightarrow y_1 a = y_2 a$$

$$\Rightarrow y_1 = y_2$$
 (By Right cancellation law)

∴ Solution is unique.

Hence the equations ax=b and ya=b have unique solution.

Theorem6: If (G, \cdot) is a group then $(ab) = a^2b^2 \Leftrightarrow (G, \cdot)$ is an abelian group.

Proof: Let a, b \in G \Rightarrow ab \in G

$$(ab)^2 = a^2b^2 \Leftrightarrow (ab)(ab) = (aa)(bb)$$

 $\Leftrightarrow [(ab)] = [(aa)]b$ (: · is an associative)

$$\Leftrightarrow [a(ba)]b = [a(ab)]b$$

$$\Leftrightarrow a(ba) = a(ab)$$

 $\Leftrightarrow ba = ab$

 \Leftrightarrow (G, ·) is an abelian group

Theorem7: In a group $(G, \cdot) \forall a, \in G a^2 = e$ then prove that G is an abelian.

(OR)

In a group (G, \cdot) every element has its own inverse (i.e. $a = a^{-1} \Rightarrow a^2 = e \ \forall \ a, \in G$) then (G, \cdot) is an abelian group.

Proof: Let a, b, \in G \therefore ab \in G

Since $\forall a \in G \ a^2 = e$,

we have
$$(ab)^2 = e$$

 $\Rightarrow (ab)(ab) = e$
 $\Rightarrow ab = (ab)^{-1} = b^{-1}a^{-1}$
 $\Rightarrow ab = b^{-1}a^{-1} \rightarrow (1)$

But $a^2 = e \Rightarrow aa = e \Rightarrow a = a^{-1}$ Similarly $b^2 = e \Rightarrow bb = e \Rightarrow b = b^{-1}$

From (1) $ab=ba \Rightarrow G$ is an abelian

(OR)

Let $a, b \in G$ $\therefore ab \in G$ By hypothesis $a = a^{-1}$ $b = b^{-1}$ and $ab = (ab)^{-1}$ Since $ab = (ab)^{-1}$ $\Rightarrow ab = b^{-1}a^{-1}$ $\Rightarrow ab = ba$ ($a = a^{-1}$ $b = b^{-1}$) $\therefore ab = ba$ $\forall a, b \in G$

Theorem8: An algebraic system (G, \cdot) is a group \Leftrightarrow (i). (b, c) = (a, b). $c \forall a, b, c \in G$

(ii) The equations ax = b, ya = b have unique solution for each $x, y, a, b \in G$

Necessary condition (\Rightarrow) : Given that (G, \cdot) is a group

Since (G, \cdot) is a group $\Rightarrow a.(b.c) = (a.b).c \ \forall a, b, c \in G$

To prove that in a group (G, \cdot) The equations ax = b, = b have unique

solution for each $x, y, a, b \in G$. Let a, b $\in G$,

Since a, b \in G ax = b

$$\Rightarrow a^{-1}(ax) = a^{-1}b$$

$$\Rightarrow$$
 $(a^{-1}a) = a^{-1}b$

$$\Rightarrow ex = a^{-1}b$$

$$\Rightarrow x = a^{-1}b$$

But if
$$x = a^{-1}b$$

Now
$$ax = b$$

$$\Rightarrow$$
 $(a^{-1}b) = b$

$$\Rightarrow$$
 $(aa^{-1}) = b$

$$\Rightarrow eb = b$$

$$\Rightarrow b = b$$

 $x = a^{-1}b$ is the solution of the equation ax=b.

Uniqueness part: If possible suppose that x_1 , be two solutions of ax=b,

$$ax_1 = b$$
 and $ax_2 = b$

$$\Rightarrow ax_1 = ax_2$$

$$\Rightarrow x_1 = x_2$$
 (By left cancellation law)

∴ Solution is unique.

Similarly $y = ba^{-1}$ is the solution of ya =b.

If possible suppose that y_1, y_2 be the solution of ya=b.

$$\therefore y_1a = b \ and \ y_2a = b$$

$$\Rightarrow y_1a = y_2a$$

$$\Rightarrow$$
 $y_1 = y_2$ (By Right cancellation law)

: Solution is unique.

Hence the equations ax=b and ya=b have unique solution.

Sufficient condition (\Leftarrow): Conversely given that (G, ·) is an algebraic system such that

$$(i).\,(b.\,c)=(a.\,b).\,c\ \forall a,b,c\in G$$

(ii) The equations ax = b, ya = b have unique solution for each x, y, a, $b \in G$

To prove that (G, \cdot) is a group. For this we have to show that (i) G has identity element $(\forall b \in G, \exists e \in G \ni b. e = b = e. b)$

(ii) Every element in G has multiplicative inverse $(\forall a \in G \text{ so } \exists b \in G \ni a.b = e)$

Since the equations ax = b, ya = b have unique solution for each $x, y, b \in G$

The equations ax = a has unique solution for each $a \in G$

Let it be $e \in G : ae = a$

Also the equations ya = b has unique solution for each $a, \in G$

Let it be $d \in G : da = b$

Let $b \in G$

Now be = (da)e= d(ae)

= da = b

 \therefore be = b \Rightarrow e is the identity element in G.

Let $a \in G$, and $e \in G$

Since the equation ax = e has unique solution for each $a, e \in G$

Let it be $b \in G$ $\therefore ab = e \Rightarrow b$ is the inverse of a.

Each element in G has multiplicative inverse.

 \therefore (G,·) is a group

Theorem9: In finite semi group (G, \cdot) cancellation laws holds then (G, \cdot) is a group

Proof: we know that in semi group (G, \cdot) the equations ax=b and

ya =b have a unique solution for each $x, y, a, b, \in G$ then (G, \cdot) is a group.

We prove this theorem it is enough to show that the equations ax=b and

ya =b have a unique solution for each $x, y, a, b, \in G$.

Let $G = \{a_1, a_2, \dots a_n\}$ be have 'n' distinct elements and (G, \cdot) is a semi group satisfies cancellation laws.

Let $a\neq 0 \in G$

Consider let $aG = \{aa_1, 2, \dots aa_n\}$

To show that aG=G, Let $p \in aG \Rightarrow p=a x_k$ for some $x_k \in G$ $1 \le k \le n$

Since $a \in G$, $x_k \in G \Rightarrow a x_k \in G \implies aG \subseteq G$

If possible suppose that $aa_i = aa$ for $i \neq j$

$$\Rightarrow a_i = a_i$$
 (By left cancellation laws)

Which is contradiction to G has 'n' distinct elements

 \therefore aG has 'n' distinct elements and G has 'n' distinct elements. and $\alpha G \subseteq G$

$$\therefore$$
 aG =G

Let
$$b \in G \Rightarrow b \in a G$$
 ($aG = G$)

$$\Rightarrow b = ax_p \text{ for some} x_p \text{ where } 1 \leq p \leq n$$

To show that x_p will be a unique solution.

If possible suppose that x_p , x_q be the solutions of ax=b.

$$\therefore ax_p = b$$
 $ax_q = b$

$$\therefore ax_p = ax_q$$

$$\Rightarrow x_p = x_q$$
 (By left cancellation laws)

Hence there exist unique solution $x_p \in G$ for ax=b.

 \therefore The equations ax=b has a unique solution for each a, b \in G.

Next consider a set $Ga = \{a_1a, a_2a, \dots a_na\}$

Similarly we can prove that the equation ya=b has a unique solution for each a, b ∈G

$$\therefore$$
 (G, ·) is a group.

Theorem10: Let G be a group .Let a, b \in G. Then prove that $(ab) = a^nb^n$ when G is abelian and $n \in \mathbb{N}$

Proof: For $n \in \mathbb{N}$ we prove that this result by mathematical induction on $n \in \mathbb{N}$

Let s (n) be
$$(ab) = a^n b^n$$

For n=1
$$(ab)^1 = ab$$

$$= a^1 b^1$$

$$\therefore \quad s(1) \text{ is true.}$$

We can assume that the s(n) is true for some $n=k \in \mathbb{N}$

$$(ab)^{k} = a^{k}b^{k}$$

$$\operatorname{Now}(ab)^{k+1} = (ab)^{k}(ab)$$

$$= (a^{k}b^{k})(ab)$$

$$= (a^{k}b^{k})(ba) \qquad (G \text{ is an abelian})$$

$$= a^{k}(b^{k}b)a \qquad (\text{is an associative})$$

$$= a^{k}a(b^{k}b) \qquad (Again G \text{ is an abelian})$$

$$= a^{k+1}b^{k+1}$$

$$\therefore S(k+1) \text{ is true.}$$

Theorem11: If G is a group such that $(ab) = a^m b^m$ for three consecutive integers m for all a, b, \in G, show that G is abelian.

Proof: To prove that $ab=ba \forall a, b \in G$

∴ G is abelian.

Let a, $b \in G$ and m, m+1, m+2 be three consecutive integers

$$(ab)^{m} = a ; (ab)^{m+1} = a^{m+1}b^{m+1}$$

$$(ab)^{m+2} = a^{m+2}b^{m+2}$$

$$Now (ab)^{+2} = (ab)^{m+1}(ab)$$

$$\Rightarrow (ab)^{+2} = a^{m+1}b^{m+1}(ab)$$

$$\Rightarrow aa^{m+1}b^{m+1}b = aa^{m}(ab)$$

$$\Rightarrow a^{m+1}b^{m+1}b = a^{m}(ab) (By L. C. L)$$

$$\Rightarrow a^{m+1}b^{m+1} = a^{m}b^{m}ba (By R. C. L)$$

$$\Rightarrow (ab)^{+1} = (ab)^{m}(ba)$$

$$\Rightarrow (ab)^{m}(ab) = (ab)^{m}(ba)$$

$$\Rightarrow ab = ba By L. C. L$$

$$ab = ba \forall a, b \in G$$

Addition modulo M: Let $a, \in \mathbb{Z}$ and Mbe fixed positive integer. If r is the remainder $(0 \le r < M)$ when a + b is divided by M. We define $a +_m b = r$.

We read it as "a addition modulo M b"

Ex: 1)
$$3 + 45 = 0$$
 $(3 + 5 = \frac{8}{4} = 0)$ 2) $3 + 47 = 2$ $(3 + 7 = \frac{10}{4} = 2)$

3)
$$5+_56=1$$
 $(5+6={}^{11}=1)$

Multiplication modulo P: Let $a, \in \mathbb{Z}$ and Pbe fixed positive integer. If r is the remainder $(0 \le r < P)$ hen ab is divided by P. We define $a \times_P b = r$.

We read it as "a multiplication modulo P b"

Ex: 1)
$$3 \times_4 5 = 3$$
 $(3 \times 5 = {}^{15} = 3)$ 2) $3 \times_4 7 = 1$ $(3 \times 7 = {}^{21} = 1)$

3)
$$5 \times_5 6 = 0$$
 $(5 \times 6 = {}^{30} = 0)$

A congruent to b modulo M: Let $a, \in \mathbb{Z}$ and Mbe fixed positive integer. If r is the remainder $(0 \le r < M)$. If a - b is divisible by M. (or divides by M)

then we say that a is congruent to b modulo M and it is denoted by $a \equiv b \pmod{M}$

$$i.e.a \equiv b \pmod{M} \Leftrightarrow M \mid (a - b)$$

Ex:
$$.4 \equiv 2 \pmod{2} = (2|(4-2) = 2|2)$$

Theorem1: The set $G = \{0, 2, 3, ..., (m-1)\}$ of first m positive integers form an abelian group under addition modulo M

Proof: If $a, \in \mathbb{Z}$ and $m \in \mathbb{N}$ then $a +_m b = r$ where r is the remainder when a + b is divided by m when $0 \le r \le m - 1$

(i) Closure property: Let $a, b \in G$ then $0 \le a \le m-1$ and $0 \le b \le m-1$

$$a+mb=r \in G \ since 0 \le r \le m-1$$

$$\therefore a +_m b \in G +_m is \ a \ binary \ on \ G$$

(ii) Associative property: Let $a, b, c \in G$

Now
$$(+_m b) +_m c = (a + b) +_m c = remainder'r' when $(a + b) + c$ is divided by 'm'
$$= remainder'r' when a + (b + c) \text{ is divided by 'm'}$$

$$= a +_m (b + c)$$

$$= a +_m (b +_m c)$$$$

$$\therefore (a+_mb)+_mc=a+_m(b+_mc)$$

(iii) Existence of identity: We have $0 \in G$

Let $a \in G$ then $0 \le a \le m-1$

Now
$$a +_m 0 = a = 0 +_m a$$

 \therefore The identity element is e = 0

(iv) Existence of inverse: we have $0+_m0=0$

Let $a \in G$ then $1 \le a \le m-1 : m-a \in G$

Now
$$a+(m-a) = 0 = (m-a)+_m a$$

 \therefore m – a is the additive inverse of 'a'

Each element in G has additive inverse.

(v) Commutative property: Let $a, b \in G$

Now
$$a+_m b = r$$
 when $a+b$ is divided by m

$$= r$$
 when $b+a$ is divided by m

$$= b+_m a$$

 $: (G, +_m)$ is an abelian group

Theorem2: The set of (p-1) egers $G = \{1, 2, 3, ..., (p-1)\}$ where p is aprime form an abelian group of order (p-1) under multiplication modulo p.

Proof: If $a, b \in \mathbb{Z}$ and $p \in \mathbb{N}$ then $a \times_p b = r$ where r is the remainder when ab is divided by p when $0 \le r < P$

(i) Closure property: Let $a, b \in G$ then $1 \le a \le p-1$ and $1 \le b \le p-1$ since p is aprime number so ab cannot be divisible by p.

so the remainder cannot be equal to zero. so we shall have $1 \le r \le p-1$

$$a \times_p b = r \in G \text{ since } 1 \leq r \leq p-1$$

$$\therefore a \times_p b \in G$$
 $\qquad \qquad \therefore \times_p \text{ is a binary on } G$

(ii) Associative property: Let $a, b, c \in G$

Now
$$(\times_p b) \times_p c = (ab) \times_p c = remainder'r'when(ab)c$$
 is divided by 'p'
$$= remainder'r'when \ a(bc) \ is \ divided \ by 'p'$$

$$= a \times_p (bc)$$

$$= a \times_p (b \times_p c)$$

$$\therefore (a \times_p b) \times_p c = a \times_p (b \times_p c)$$

(iii) Existence of identity: We have $1 \in G$

Let
$$a \in G$$
 then $1 \le a \le p-1$

Now
$$a \times_p 1 = a = 1 \times_p a$$

 \therefore The identity element is e = 1

(iv) Existence of inverse: Let $s \in G$ then $1 \le s \le m-1$

Consider the product of
$$p-1 \Rightarrow 1 \times_p s, 2 \times_p s, 3 \times_p s \dots (p-1) \times_p s$$

All these elements ar the elements of G by binary operation and

all these elements are distinct

If possible suppose that two elements are equl

$$i \times_p s = j \times_p s$$
 where $i \neq j$ and $1 \leq i \leq p-1$ and $1 \leq j \leq p-1$

 \Rightarrow is and js have the same remainder when each is divided by 'p'

$$\Rightarrow$$
 is – js is divisible by 'p'

$$\Rightarrow p|is - js \Rightarrow p|(i - j)s \Rightarrow p|i - j \text{ or } p|s$$

which is a contrdict to $1 \le i - j \le p - 2$

Hence
$$i \times_p s \neq j \times_p s$$
 : all elements are distinct

And also one of these elements must be equal to 1

since $1 \in G$ so $\exists k \in G \ni k \times_p s = 1 = s \times_p k \implies k$ is the inverse of s

Each element in G has multiplicative inverse.

(v) Commutative property: Let $a, b \in G$

Now
$$a \times_p b = r$$
 when ab is divided by p

$$= r \text{ when } ba \text{ is divided by } p$$

$$= b \times_p a$$

 $: (G, \times_p)$ is an abelian group

Problems:

1. P.T the set $G = \{0, 2, 3, 4\}$ is an abelian group of order '5' w.r.t. addition modulo'5'

Sol: Given $G = \{0,1,2,3,4\}$ under $'+_5'$

Construct a composition table for G

- (i) Closure property: we observe that all elements in C.T are the elements of *G*
- $'+_5'$ is binary on G
- (ii) Associative property: Let $a, b, c \in G$

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Now
$$(+_5b) +_5 c = (a+b) +_5 c = remainder'r'when (a+b) + c is divided by '5'$$

$$= remainder'r'when a + (b+c) is divided by '5'$$

$$= a +_5 (b+c)$$

$$= a +_5 (b +_5 c)$$

$$\therefore (+_5 b) +_5 c = a +_5 (b +_5 c)$$

- (iii) Existence of identity: From C.T we observe that the row headed by 0 is coincide with the top row of C.T. \therefore 0 is the identity element in G.
- (iv) Existence of inverse: From C.T we observe that the identity elements 0 contains in each row.

The inverse of 0,1,2,3,4 are 0,4,3,2,1 respectively.

- \therefore Each element in G has additive inverse $Th(G, +_5)$ is a group
- (v) commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence $(G, +_5)$ is an abelian group of order 5
- 2. P.T the set $G = \{1, 3, 4\}$ is an abelian group of order '4' w.r.t. multiplication modulo'5'

Sol: Given
$$G = \{1,2,3,4\}$$
 under ' \times_5 '

Construct a composition table for G

(i) Closure property: we observe that all elements in C.T are the elements of *G*

$$' \times_5$$
 'is binary on G

(ii) Associative property: Let $a, b, c \in G$

× ₅	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Now (
$$\times_5 b$$
) $\times_5 c = (ab) \times_5 c = remainder'r'when(ab)c$ is divided by '5'
$$= remainder'r'when (bc) \text{ is divided by '5'}$$

$$= a \times_5 (bc)$$

$$= a \times_5 (b \times_5 c)$$

$$\therefore (\times_5 b) \times_5 c = a \times_5 (b \times_5 c)$$

- (iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the top row of C.T. \therefore 1 is the identity element in G.
- (iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each row.

The inverse of 1,2,3,4 are 1,3,2,4 respectively.

- \therefore Each element in G has additive inverse $Th(G,\times_5)$ is a group
- (v) commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence (G, \times_5) is an abelian group of order 4

3. P.T the set $G = \{1, 5, 7\}$ is an abelian group of order '4' w.r.t. multiplication modulo'8'

Sol: Given $G = \{1,3,5,7\}$ under ' \times_8 '

Construct a composition table for G

- (i) Closure property: we observe that all elements in C.T are the elements of *G*
- $' \times_8 '$ is binary on G
- (ii) Associative property: Let $a, b, c \in G$

×8	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Now ($\times_8 b$) $\times_8 c = (ab) \times_8 c = remainder'r'when(ab)c$ is divided by '8' = remainder'r'when (bc) is divided by '8' $= a \times_8 (bc)$ $= a \times_8 (b \times_8 c)$

$$\therefore (\times_8 b) \times_8 c = a \times_8 (b \times_8 c)$$

- (iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the top row of C.T. \therefore 1 is the identity element in G.
- (iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each row.

The inverse of 1,3,5,7 are1,3,5,7 respectively.

- \therefore Each element in G has additive inverse $Th(G,\times_8)$ is a group
- (v) commutative property: From C.T we observe that all the rows identical with their corresponding columns. Hence (G,\times_8) is an abelian group of order 4

Order of an element: Let (G, \cdot) be a group and $a \in G$ then there exist a least positive integer 'n' such that a^n =e. then n is said to be order of 'a 'and it is denoted by O(a). In case such a positive integer does not exist then we say that O(a) is zero (or) infinite.

Note: (i) We have
$$e^1 = e \implies (e) = 1$$

- $\div \textit{ The orer of identity element is } 1$
- (ii) In addition we have $na = 0 \implies (a) = n$

Ex: 1. Find the order of each element in a group $G = \{1, -1\}$ under multiplication.

Sol: $G = \{1, -1\}$ is group under multiplication. Here e = 1

Let
$$a = 1$$
 now $(1)^1 = 1$, $(1)^2 = 1$, $(1)^3 = 1$: $o(1) = 1$

Let
$$a = -1$$
 now $(-1)^1 = -1$, $(-1)^2 = 1$, $(-1)^3 = -1$: $o(-1) = 2$

$$\therefore$$
 (1) = 1, (-1) = 2

2. Find the order of each element in a group $G = \{1, \omega_i\}$ under multiplication

Sol: $G = \{1, 1\}$ is group under multiplication. Here e = 1

Let
$$a = 1$$
 now $(1)^1 = 1$, $(1)^2 = 1$, $(1)^3 = 1$: $o(1) = 1$

Let
$$a = \omega$$
 now $(\omega)^1 = \omega$, $(\omega)^2 = \omega^2$, $(\omega)^3 = \omega^3 = 1$: $o(\omega) = 3$

Let
$$a = \omega^2$$
 now $(\omega^2)^1 = \omega^2$, $(\omega^2)^2 = \omega$, $(\omega^2)^3 = \omega^6 = 1$: $(\omega^2) = 3$

$$\therefore$$
 (1) = 1, (ω) = 3, $o(\omega^2)$ = 3

3. Find the order of each element in a group $G = \{1, -1, -i\}$ under multiplication

Sol: $G = \{1, -1, -i\}$ is group under multiplication. Here e = 1

Let
$$a = 1$$
 now $(1)^1 = 1$, $(1)^2 = 1$, $(1)^3 = 1$: $o(1) = 1$

Let
$$a = -1$$
 now $(-1)^1 = -1$, $(-1)^2 = 1$, $(-1)^3 = -1$: $o(-1) = 2$

Let
$$a = i \text{ now } (i)^1 = i, (i)^2 = -1, (i)^3 = -i, (i)^4 = 1 : o(i) = 4$$

Let
$$a = -i now (-i)^1 = -i, (-i)^2 = -1, (-i)^3 = i, (-i)^4 = 1 : o(-i) = 4$$

$$\therefore$$
 (1) = 1, (-1) = 2, $o(i)$ = 4, $o(-i)$ = 4

4. Find the order of each element in a group $G = Z_6 = \{0, 1, 3, 4, 5\}$ under addition modulo 6

Sol: $G = Z_6 = \{0,1,2,3,4,5\}$ is a group under addition modulo 6 Here e = 0

Let
$$a = 0$$
 now $1.(0) = 0$, $2.(0) = 0$, $3.(0) = 0$ so $o(0) = 1$

Let
$$a = 1$$
 now $1 + 61 + 61 + 61 + 61 + 61 = 6$. $(1) = 0$, $(1) = 0$, ... so $o(1) = 6$

Let
$$a = 2 \text{ now } 2 +_6 2 +_6 2 = 3$$
. $(2) = 0$, $(6(2) = 0, \dots \text{ so } o(2) = 3$

Let
$$a = 3 \text{ now } 3 +_6 3 = 2$$
. $(3) = 0$, $4(3) = 0$, ... so $o(3) = 2$

Let
$$a = 4 \text{ now } 4 +_6 4 +_6 4 = 3$$
. $(4) = 0$, $6(4) = 0$, ... so $o(4) = 3$

Let
$$a = 5$$
 now $5 + 65 + 65 + 65 + 65 + 65 + 65 = 6$. $(5) = 0$, $(5) = 0$, ... so $o(5) = 6$

5. In a $gr(G_{i})$, if $a, b \in G$ then $o(a) = 5, b \neq e$ and $aba^{-1} = b^{2}$ find o(b)?

Sol: Given
$$(a) = 5 \Rightarrow a^5 = e$$
 and $aba^{-1} = b^2$

Now
$$(aba^{-1})^2 = (aba^{-1})(aba^{-1}) = ab^2a^{-1} = a(aba^{-1})a^{-1} = a^2ba^{-2}$$

$$(aba^{-1})^2 = a^2ba^{-2}$$

$$\Rightarrow [(aba^{-1})^2]^2 = (a^2ba^{-2})^2 \Rightarrow (aba^{-1})^4 = a^2b^2a^{-2} = a^2(aba^{-1})a^{-2} = a^3ba^{-3}$$

$$\therefore (aba^{-1})^4 = a^3ba^{-3} \Longrightarrow (aba^{-1})^8 = a^4ba^{-4}$$

$$\Rightarrow (aba^{-1})^{16} = a^5ba^{-5} \Rightarrow (b^2)^{16} = ebe^{-1} \Rightarrow b^{32} = b \Rightarrow b^{31} = e \Rightarrow (b)|31$$

since 31 is a prime so (b) = 1 or 31

If (b) = 1 then b = e which is contradict to $b \neq e$: (b) = 31

6. If every element of a group G except the identity is of order 2 then prove that G is an abelian.

Proof: Let (G, \cdot) be group and 'e' be the identity element of G

We have
$$(e) = 1$$
 also $e^2 = e$

Let $a \neq e$

since the order of the element $a \neq e$ is $2 \Rightarrow (a) = 2 \Rightarrow a^2 = e \Rightarrow a = a^{-1}$

Let
$$a, b \in G \implies ab \in G \implies (ab)^2 = e$$

$$\Rightarrow ab = (ab)^{-1}$$

$$\Rightarrow ab = b^{-1}a^{-1} = ba$$

 $\therefore ab = ba \Longrightarrow (G,\cdot)$ is an abelian group.

Theorem1: The order of every element of a finite group (G,\cdot) is also finite and is always less than or equal to order of G

Proof: (G,\cdot) be a group and 'a'be any element of G.

By binary operation the set of all positive integral power of 'a' are $a^1, ^2, a^3, \ldots \in G$ are all cannot be distinct (since G is finite group)

Let $a^r = a^s$ where $r, s \in \mathbb{N}$ and r > s

$$\Rightarrow a^r a^{-s} = a^s a^{-s} \Rightarrow a^{r-s} = a^0 = e \Rightarrow a^m = e \text{ where } m = r - s > 0$$

 \therefore m is a positive integer such that $a^m = e$

By well ordering principal "Every positive integer set has a least member"

Thus the set of all those positive integer m such that $a^m = e^m$ has least number say 'n'

 \therefore n'is a least positive integer such that $a^n = e \implies o(a) = n$ i.e. finite

Next to prove that $o(a) \leq o(G)$

Leto(a) = $p \Rightarrow p$ is a leat positive integer such that $a^p = e$

If possible suppose that o(a) > o(G)

By binary operation the set of all positive integral power of a' are $a^1, a^2, a^3, \dots, a^p \in G$

The set of all these elements are distinct

Let $a^r = a^s$ where $1 \le r \le p$, $1 \le s \le p$ and r > s

$$\Rightarrow a^r a^{-s} = a^s a^{-s} \Rightarrow a^{r-s} = a^0 = e \Rightarrow (a) = r - s \qquad (\because 1 \le r - s \le p - 1 < p)$$

which is a contradict to o(a) = p. Hence $a^r \neq a^s$

 $\therefore a^1, a^2, a^3 \dots a^p \in Gare \ all \ distinct$

since $o(a) > o(G) \Rightarrow p > o(G)$ which is not possible

Hence $o(a) \le o(G)$

Theorem2: In a $gr(G,\cdot)$, if $a \in G$ then $o(a) = o(a^{-1})$

Proof: Let $(a) = n \Rightarrow n$ is a least positive integer such that $a^n = e$

Let $(a^{-1}) = m \Rightarrow m$ is a least positive integer such that $(a^{-1}) = e$

To prove that $(a) = (a^{-1}) i.e. n = m \ (n \le m \ and \ m \le n)$ since $a^n = e \Rightarrow (a^n)^{-1} = e^{-1} \Rightarrow (a^{-1})^n = e \Rightarrow o(a^{-1}) \le n \Rightarrow m \le n \to (1)$ $also \ (a^{-1}) = e \Rightarrow a^{-m} = e \Rightarrow (a^{-m})^{-1} = e^{-1} \Rightarrow a^m = e \Rightarrow o(a) \le m \Rightarrow n \le m \to (2)$ From $(1) \ (2) \ n = m \ i.e. \ (a) = o(a^{-1})$

Theorem3: In a $gr(G, \cdot)$, if $a \in G$ then o(a) = n then $a^m = e \Leftrightarrow n \mid m$

Necessary condition (\Longrightarrow): Given that (a) = n \Longrightarrow n is a least positive integer such that $a^n = e$

By division algorithm $m, (\neq 0) \in \mathbb{Z}$ so $\exists q, r \in \mathbb{Z}$ such that m = nq + r where $0 \leq r < n$ since $a^m = e \Rightarrow a^{nq+r} = e \Rightarrow a^{nq}a^r = e \Rightarrow (a^n)^q a^r = e \Rightarrow (e)^q a^r = e \Rightarrow a^r = e$ $\Rightarrow r$ is a least positive integer such that $a^r = e$ where $0 \leq r < n$ If 0 < r < n then it is contradict to (a) = .Hence r = 0 $\therefore m = nq + 0 \Rightarrow n|m$

Sufficient condition (\Leftarrow): conversely given that (a) = n such that n|m

To prove that $a^m = e$

since $o(a) = n \Rightarrow n$ is a least positive integer such that $a^n = e$ since n|m by definition so \exists a positive integer p such that m = npNow $a^m = a^{np} = (a^n)^p = e^p = e$

$$\therefore a^m = e$$

UNIT-2: SUB GROUPS

Complex: Any subset of a group *G* is called as a complex.

Ex (i) The set $A = \{1, -1\}$ is a complex of group $G = \{1, -1, i, -i\}$ under multiplication

(ii) The set of integers is a complex of a group $(\mathbb{Q}, +)$

Multiplication of a complex: Let M, N be the complex of a group (G, \cdot) then $MN = \{mn \mid m \in M, n \in N\}$ is called as multiplication of complex.

Inverse of complex: Let M be the complex of a group (G,\cdot) then $M^{-1} = \{m^{-1} \in G/m \in M\}$ is called as the inverse of element of M

Sub group: A non empty subset H is said to be a subgroup of a group (G, \cdot) if H itself is a group under the same operation of G

Ex: The set of integers is a subgroup of $(\mathbb{Q}, +)$ i.e. $(\mathbb{Z}, +)$ is a sub group of $(\mathbb{Q}, +)$

Note: 1. Every group contains at least two sub groups. They are $H = \{e\}$ and H = G are the subgroup of G itself. These two subgroups are called improper/trivial subgroups of G. If any other subgroups exist then it is called proper/non trivial subgroups.

Ex: 1. Find all subgroups of a group $G = \{1, -1, i, -i\}$ under multiplication.

Sol: Given $G = \{1, -1, i, -i\}$ is group under multiplication.

 $H_1 = \{1\}$ and $H_2 = G$ are trivial subgroups of G

Clearly $H_3 = \{1, -1\}$ is also a group.

Hence H_3 is a non-trivial subgroup of G

•	1	-1
1	1	-1
-1	-1	1

2 Find all subgroups of a group $Z_6 = \{0, 1, 3, 4, 5\}$ under addition.

Sol: Given $Z_6 = \{0,1,2,3,4,5\}$ is a group under $+_6$

 $H_1 = \{0\}$ and $H_2 = G$ are trivial subgroups of G

Clearly $H_3 = \{0,2,4\}$ is also a group.

Clearly $H_4 = \{0,3,\}$ is also a group

Hence $H_{3,4}$ is a non-trivial subgroup of G

+6	0	3
0	0	3
3	3	0

+6	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

Theorem1: The identity of a subgroup H of a group (G, \cdot) is same as the identity element of G

Proof: Let $a \in H$ and e^1 be the identity element of H.

Since H is a subgroup of $G \Rightarrow (H, \cdot)$ is a group $\therefore ae^1 = a \rightarrow (1)$

Since $a \in H \implies a \in G$ ($H \subseteq G$) and e is the identity element of $G : ae = a \rightarrow (2)$

Since $e^1 \in H \Rightarrow e^1 \in G \ From (1) (2) \ ae^1 = ae \Rightarrow e^1 = e$

Theorem2: The inverse of any element of a subgroup H of a group (G, \cdot) is same as the inverse element in a group G

Proof: Let $a \in H$ and e be the identity element of G.

Since H is a subgroup of $G \Rightarrow (H, \cdot)$ is a group since $a \in H \Rightarrow a \in G (: H \subseteq G)$

Let'b' be the inverse of 'a' \Rightarrow ab = $e \rightarrow (1)$

Let'c' be the inverse of 'a' \Rightarrow ac = e \rightarrow (2)

From(1)(2) $ab = ac \implies b = c$

Theorem3: If *H* is a subgroup of a group *G* then $H^{-1} = H$

Proof: Given that *H* is a subgroup of a group *G*

To prove that $H^{-1} = H$ ($^{-1} \subseteq H$ and $H \subseteq H^{-1}$)

Let $h^{-1} \in H^{-1} \Longrightarrow h \in H$ since H is a subgroup and $h \in H \Longrightarrow h^{-1} \in H$

$$\therefore h^{-1} \in H^{-1} \Longrightarrow h^{-1} \in H \Longrightarrow H^{-1} \subseteq H \to (1)$$

Let $h \in H$, ce H is a subgroup $\implies h^{-1} \in H \implies (h^{-1})^{-1} \in H^{-1} \implies h \in H^{-1}$

$$\therefore h \in H \Longrightarrow h \in H^{-1} \Longrightarrow H \subseteq H^{-1} \to (2)$$

From (1) (2) $H^{-1} = H$

The converse of above theorem need not be true i.e. H is a complex of G such that

 $H^{-1} = H$ then H need not be a subgroup.

Consider $G = \{1, -1, i, -i\}$ and $H = \{-1\}$

Clearly H is non - empty subset of G.

$$H^{-1} = \{(-1)^{-1}\} = \{-1\} = H$$

But $(-1)(-1) = 1 \notin H \Rightarrow$ binary operation fails. Hence H is not a group

Thus H is not a subgroup of G.

Theorem4: If H is a subgroup of a group G then HH = H

Proof: Given that *H* is a subgroup of a group *G*

To prove that HH = H ($.e. HH \subseteq H$ and $H \subseteq HH$)

Let $x \in HH$ then $x = h_1h_2$ where $h_1 \in H$, $h_2 \in H$

Since H is a subgroup of G By closure property $h_1 \in H$, $h_2 \in H \implies h_1 h_2 \in H \implies x \in H$

$$\therefore x \in HH \implies x \in H \implies HH \subseteq H \rightarrow (1)$$

Let $h_3 \in H$, e is the identity element in $H : h_3 = h_3 e \in HH \implies h_3 \in HH$

$$\therefore h_3 \in H \Longrightarrow h_3 \in HH \Longrightarrow H \subseteq HH \to (2)$$

From (1) (2) HH = H

The converse of above theorem need not be true i.e. H is a complex of G such that

HH = H then H need not be a subgroup.

Consider $G = \{2^n/n \in \mathbb{Z}\}$ is a group

and
$$H = \{1, 2^1, 2^2, 2^3, \dots\}$$

Clearly H is non – empty subset of G.

$$HH = \{h_1h_2/h_1 \in H, h_2 \in H\} = \{1, 2^1, 2^2, 2^3, \dots\} = H$$

But $2 \in H$ so $\exists_{2} \notin H \ni 2$. $(_{2}) = 1 \implies inverse \ fails$. Hence H is not a group

Thus H is not a subgroup of G.

Theorem5: A non-empty subset H of a group G is a subgroup of G

$$\Leftrightarrow$$
 (i) $a \in H$, $b \in H \Rightarrow ab \in H$ (ii) $a \in H \Rightarrow a^{-1} \in H$

Necessary condition (\Rightarrow) : Given that H is a subgroup of G.

To prove th(i) $a \in H, b \in H \implies ab \in H$ (ii) $a \in H \implies a^{-1} \in H$

Since H is a subgroup of $G \Rightarrow (H, \cdot)$ is a group

By closure property: $a \in H, b \in H \implies ab \in H$

By inverse property: $a \in H \implies a^{-1} \in H$

Sufficient condition (\Leftarrow): Conversely given that H is a non - empty subset of G

 $such \ th(i) \ a \in H, b \in H \Longrightarrow ab \in H \ (ii) \ a \in H \Longrightarrow a^{-1} \in H$

To prove that H is a subgroup of *G*

(i) By (i) $a \in H, b \in H \implies ab \in H : closure property holds in H$

(ii)Since all elements of H are the elements of G $(H \subseteq G)$. We know that

 $multiplication\ is\ associative\ in\ G\ and\ hence\ multiplication\ is\ associative\ in\ H.$

(iii) Since $H \neq \phi$ Let $a \in H$

Let $a \in H$, $a \in H$ (ii) $a^{-1} \in H$

 $a \in H, a^{-1} \in H \quad (i) \ aa^{-1} \in H \implies e \in H$

(iv) By (ii) $a \in H \implies a^{-1} \in H$

 \therefore (*H*,·) is a group

Hence H is a subgroup of G

Theorem6: A non-empty subset H of a group G is a subgroup of G

 \Leftrightarrow (i) $a \in H, b \in H \Rightarrow ab^{-1} \in H$ where b^{-1} is the inverse of b in G

Necessary condition (\Rightarrow) : Given that H is a subgroup of G.

To prove th(i) $a \in H, b \in H \Longrightarrow ab^{-1} \in H$

Since H is a subgroup of $G \Rightarrow (H, \cdot)$ is a group

Let $a \in H, b \in H$, H is a subgroup of $G \Longrightarrow a \in H$, $^{-1} \in H \Longrightarrow ab^{-1} \in H$

Sufficient condition (\Leftarrow): Conversely given that H is a non - empty subset of G

 $such\ th(i)\ a\in H, b\in H\Longrightarrow ab^{-1}\in H$

To prove that H is a subgroup of G

(i) Since $H \neq \phi$ Let $a \in H$

Let $a \in H$, $a \in H$ By Hypothesis $aa^{-1} \in H \implies e \in H$

- \therefore e is the identity element in H
- (ii) Since $e \in H$, $a \in H$ by Hyp $ea^{-1} \in H \implies a^{-1} \in H$
- $a \in H \implies a^{-1} \in H$
- (iii)Let $a \in H$, $b \in H \Rightarrow a \in b^{-1} \in H$ By Hyp $a(b^{-1})^{-1} \in H \Rightarrow ab \in H$
- ∴ Closure property holds in H
- (ii) Since all elements of H are the elements of G ($H \subseteq G$). We know that multiplication is associative in G and hence multiplication is associative in H.
- \therefore (*H*,·) is a group

Hence H is a subgroup of G

Theorem7: A non-empty subset H of a group G is a subgroup of $G \Leftrightarrow HH^{-1} \subseteq H$

Necessary condition (\Rightarrow) : Given that H is a subgroup of G.

To prove that $HH^{-1} \subseteq H$

Let $x \in HH^{-1} \Longrightarrow x = ab^{-1}$ where $a \in H, b^{-1} \in H^{-1}$ since $a \in H, b \in H$

Since H is a subgroup of G so $a \in H$, $\in H \implies ab^{-1} \in H \implies x \in H$

$$\therefore x \in HH^{-1} \implies x \in H \implies HH^{-1} \subseteq H$$

Sufficient condition (\Leftarrow): Conversely given that H is a non - empty subset of G

such that $HH^{-1} \subseteq H$

To prove that H is a subgroup of *G*

(i) Since $H \neq \phi$ Let $a \in H$

 $Let \ a \in H, b \in H \implies a \in H, b^{-1} \in H^{-1} \implies ab^{-1} \in HH^{-1} \implies ab^{-1} \in H \quad since \ HH^{-1} \subseteq H$

 $\therefore \ a \in H, b \in H \Longrightarrow ab^{-1} \in H$

Hence H is a subgroup of G

Theorem8: A non-empty subset H of a group G is a subgroup of $G \Leftrightarrow HH^{-1} = H$

Necessary condition (\Rightarrow) : Given that H is a subgroup of G.

To prove that $HH^{-1} = H$ i.e. $(^{-1} \subseteq H \text{ and } H \subseteq HH^{-1})$

Let $x \in HH^{-1} \Longrightarrow x = ab^{-1}$ where $a \in H, b^{-1} \in H^{-1}$ since $a \in H, b \in H$

Since H is a subgroup of G so $a \in H$, $\in H \implies ab^{-1} \in H \implies x \in H$

 $\therefore x \in HH^{-1} \implies x \in H \implies HH^{-1} \subseteq H \rightarrow (1)$

Let $y \in H \implies y = ab$ where $a \in H, b \in H$

Since H is a subgroup of G so $y \in H$

Since $a \in H$, $\in H$, since H is a subgroup of $G \implies ab^{-1} \in H$

According to definition of complex $a \in H$, $\in H$, $\Rightarrow a \in H$, $b^{-1} \in H^{-1}$

 $\Rightarrow ab^{-1} \in HH^{-1}$

 $\therefore ab^{-1} \in H \implies ab^{-1} \in HH^{-1} \implies H \subseteq HH^{-1} \to (2)$

From (1) and (2) $HH^{-1} = H$

Sufficient condition (\Leftarrow): Conversely given that H is a non - empty subset of G

such that $HH^{-1} = H (HH^{-1} \subseteq H \text{ and } H \subseteq HH^{-1})$

To prove that H is a subgroup of G

(i)since $H \neq \phi$ Let $a \in H$

 $Let \ a \in H, b \in H \implies a \in H, b^{-1} \in H^{-1} \implies ab^{-1} \in HH^{-1} \implies ab^{-1} \in H \quad since \ HH^{-1} \subseteq H$

 $\therefore \ a \in H, b \in H \Longrightarrow ab^{-1} \in H$

Hence H is a subgroup of G

Theorem9: A non-empty finite subset H of a group G is a subgroup of G

 \Leftrightarrow $(i)a \in H, b \in H \Rightarrow ab \in H$

Necessary condition (\Rightarrow) : Given that H is a subgroup of G.

To prove that(i) $a \in H, b \in H \implies ab \in H$

Since H is a subgroup of $G \Rightarrow (H, \cdot)$ is a group

By closure property: $a \in H, b \in H, \Rightarrow ab \in H$

Sufficient condition (\Leftarrow): Conversely given that H is a finite subset of G

such that(i) $a \in H, b \in H \implies ab \in H$

To prove that H is a subgroup of G

- (i) By Hyp $a \in H$, $b \in H \implies ab \in H$
- (ii) Since all elements of H are the elements of G ($H \subseteq G$). We know that multiplication is associative in G and hence multiplication is associative in H.

(iii) Since
$$H \neq \phi$$
, Let $a \in H$

By Hyp
$$a \in H$$
, $a \in H \implies a^2 \in H$

Again
$$a^2 \in , a \in H$$
 By Hyp $a^3 \in H$

Also
$$a^3 \in G \in H$$
 By Hyp $a^4 \in H$

By induction we prove that $a^n \in H$ where n is a positive integer

The set of all positive integral powers of 'a'are $a^1, a^2, ^3, a^4, ... a^n, a^{n+1}, ... \in H$ Since H is a finite so the set of all these elements $a^1, ^2, a^3, a^4, ... a^n, a^{n+1}, ... \in H$ can not be distinct.

Let $a^r = a^s$ where r > s and $r, s \in \mathbb{N}$

$$\Rightarrow a^{r-s} = a^0 = e \text{ since } r > s \Rightarrow r - s > 0 \Rightarrow r - s \text{ is a positive integer.}$$

$$\therefore a^{r-s} \in H \Longrightarrow e \in H$$

(iv)Since
$$r > s \implies r - s > 0 \implies r - s - 1 \ge 0 : a^{r-s-1} \in H$$

Let $a \in H$

Now
$$a. a^{r-s-1} = a^{r-s} = a^0 = e$$

$$\therefore a^{r-s-1}$$
 is the iverse of 'a'

 $Each\ element\ in\ H\ has\ multiplicative\ inverse\ .$

Hence (H, \cdot) is a group

Theorem10: A non-empty subset H of a finite group G is a subgroup of G

$$\Leftrightarrow$$
 (i) $a \in H, b \in H \Rightarrow ab \in H$

Necessary condition (\Rightarrow) : Given that H is a subgroup of a finite group G.

To prove that(i) $a \in H, b \in H \implies ab \in H$

Since H is a subgroup of $G \Rightarrow (H,\cdot)$ is a group

By closure property: $a \in H, b \in H, \Rightarrow ab \in H$

Sufficient condition (\Leftarrow): Conversely given that H is a non - empty subset of a

finite group G such that(i) $a \in H, b \in H \Rightarrow ab \in H$

To prove that H is a subgroup of G

- (i) By Hyp $a \in H$, $b \in H \implies ab \in H$
- (ii) Since all elements of H are the elements of G ($H \subseteq G$). We know that multiplication is associative in G and hence multiplication is associative in H.
- (iii) Since $H \neq \phi$, Let $a \in H$

By Hyp $a \in H$, $a \in H \implies a^2 \in H$

Again $a^2 \in , a \in H$ By Hyp $a^3 \in H$

Also $a^3 \in G \in H$ By Hyp $a^4 \in H$

By induction we prove that $a^n \in H$ where n is a positive integer

since $a \in H \Longrightarrow a \in G$

We know that the order of every element of a finite group G is also finite.

It follows that order of a be n i.e. $o(a) = n \Rightarrow a^n = e$

where n is a least positive integer

 $\therefore a^n \in H \Longrightarrow e \in H \therefore e \text{ is the identity element.}$

(iv) since $n > 0 \Rightarrow n - 1 \ge 0 \Rightarrow a^{n-1} \in H$

Let $a \in H$,

Now $a. a^{n-1} = a^n = e$

 $\therefore a^{n-1}$ is the iverse of 'a'

Each element in H has multiplicative inverse.

Hence (H,\cdot) is a group

Theorem11: If H, are two subgroups of a groupG then HK is a subgroup of G

$$\Leftrightarrow HK = KH$$

Necessary condition (\Rightarrow): Given that H, are two subgroups of a group G such that HK is a subgroup of G.

To prove that HK = KH

since HK is a subgroup of
$$G \Rightarrow (HK)^{-1} = HK$$
 $(\because H < G \Rightarrow H^{-1} = H)$ $\Rightarrow K^{-1}H^{-1} = HK$ $(\because K < G \Rightarrow K^{-1} = K)$ $\Rightarrow KH = HK$ $\therefore HK = KH$

Sufficient condition (\Leftarrow) : Conversely given that H, K are two subgroups of

a group G such that HK = KH

To prove that HK is a sbgroup of G. For this we have to show that $(HK)(HK)^{-1} = HK$

 $\therefore (HK)(HK)^{-1} = HK$

 \therefore HK is a sbgroup of G

Theorem12: The intersection of two subgroups of a group G is also a subgroup of G

Proof: Let H, K are two subgroups of a group G

To prove that $H \cap K$ is a subgroup of G

(i)since H, K are two subgroups of G

$$e \in H \text{ and } e \in K \implies e \in H \cap K \implies H \cap K \neq \emptyset$$

(ii) Clearly
$$H \cap K \subseteq G$$
 (: $H \subseteq G, K \subseteq G$)

(iii) Let
$$a, b \in H \cap K \implies a, b \in H$$
 and $a, b \in K$

Since $a, b \in H$, H is a subgroup of $G \Rightarrow ab^{-1} \in H$

also since $a, b \in K$, K is a subgroup of $G \Rightarrow ab^{-1} \in K$

$$\therefore ab^{-1} \in H \text{ and } ab^{-1} \in K \implies ab^{-1} \in H \cap K$$

 $: H \cap K$ is a subgroup of G

The union of two subgroups of a group G need not be a subgroup of G

Ex: $G = (\mathbb{Z}, +)$ be a group under addition.

Let
$$H = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$$

and $K = \{.... -9, -6, -3, 0, 3, 6, 9, ...\}$ be two subgroups.

$$H \cup K = \{... - 9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9,\}$$

Let $3,4 \in H \cup K \implies 3+4=7 \notin H \cup K \implies' +'$ is not a binary operation on $H \cup K$

 $\therefore H \cup K$ is not subgroup of G

Let
$$H = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$$
 and $K = \{..., -8, -4, 0, 4, 8, ...\}$ be two subgroups.

$$H \cup K = \{... - 8, -6, -4, -2, 0, 2, 4, 6, 8,\}$$

Let $2, 4 \in H \cup K \implies 2 + 4 = 6 \in H \cup K :: H \cup K$ is a subgroup of G

Note: $K \subseteq H$ then $H \cup K$ is a subgroup of G

Theorem13: The union of two subgroups of a group G is a subgroup of $G \Leftrightarrow$ one is contained in other. (OR)

Let H, K are two subgroups of a group G then $H \cup K$ is a subgroup of $G \Leftrightarrow H \subseteq K$ or $K \subseteq H$.

Necessary condition (\Rightarrow) : Let H, K are two subgroups of a group of G such that

 $H \cup K$ is a subgroup of G

To prove that $H \subseteq K$ or $K \subseteq H$

If possible suppose that $H \nsubseteq K$ and $K \nsubseteq H$

Since $H \nsubseteq K \implies$ so \exists atleast one element $a \in H$ but $a \notin K$

also $K \nsubseteq H \Longrightarrow$ so \exists atleast one element $b \in K$ but $b \notin H$

 $a, b \in H \cup K \ (: H \subseteq H \cup K, K \subseteq H \cup K)$

 \Rightarrow $ab \in H \cup K \ (\because H \cup Kis \ a \ subgroup) \Rightarrow ab \in H \ or \ ab \in K \ or \ ab \in H \cap K$

If $ab \in H$:

Since $ab \in H$, $\in H$, H is a sub group $\Rightarrow a^{-1} \in H$

 $a^{-1} \in H$, $ab \in H$, H is a subgroup of $G \Rightarrow a^{-1}(ab) \in H \Rightarrow b \in H$

which is a contradict to $b \notin H : ab \notin H$

If $ab \in K$:

since $ab \in K$, $b \in K$, K is a sub group $\Longrightarrow b^{-1} \in K$

 $ab \in K, b^{-1} \in K, K \text{ is a subgroup of } G \Longrightarrow (ab)^{-1} \in K \Longrightarrow a \in K$

which is a contradict to $a \notin K : ab \notin K$

 $\therefore ab \notin H \text{ and } ab \notin K \implies ab \notin H \cap K \text{ which is a contradict to } ab \in H \cap K$

Hence our supposition is wrong

Thus $H \subseteq K$ or $K \subseteq H$

Sufficient condition (\Leftarrow) : Conversely given that H, K are subgroups of G such that

 $H \subseteq K \text{ or } K \subseteq H$

To prove that $H \cup K$ is a subgroup of G

Since $H \subseteq K \implies H \cup K = K$ since K is a subgroup

 \Rightarrow $H \cup K$ is a subgroup of G

Also
$$K \subseteq H \Longrightarrow H \cup K = H$$

Since H is a subgroup \Rightarrow H \cup K is a subgroup of G

Ex: 1. Let H be a subgroup of G and Let $T = \{x \in G/xH = Hx\}$

show that T is a subgroup of G

Proof:
$$T = \{x \in G/xH = Hx\}$$

To prove that Tis a subgroup of G

(i) since $e \in G$, we have eH = He

$$\therefore e \in T \Longrightarrow T \neq \emptyset$$

(ii) clearly $T \subseteq G$ (by def of T)

(iii) Let $x, y \in T$ then xH = xH and Hy = yH

To prove that $xy^{-1} \in T$ For this we have to show that $(xy^{-1}) = (xy^{-1})$

First we prove that $y^{-1} \in T$

 $since\ Hy = yH$

$$\Rightarrow y^{-1}(Hy)y^{-1} = y^{-1}(yH)y^{-1}$$

$$\Rightarrow y^{-1}(yy^{-1}) = (y^{-1}y)Hy^{-1}$$

$$\Rightarrow y^{-1}H = Hy^{-1}$$

$$\Longrightarrow y^{-1} \in T$$

$$Now (xy^{-1}) = (Hx)^{-1}$$

$$= (xH)^{-1}$$

$$= (Hy^{-1})$$

$$= (y^{-1}H)$$

$$=(xy^{-1})$$

$$\div (xy^{-1}) = (xy^{-1}) \Longrightarrow xy^{-1} \in T$$

 \therefore Tis a subgroup of G

2. If H is a subgroup of a group G and if $g \in G$ and $gHg^{-1} = \{ghg^{-1}/h \in H\}$ then prove that gHg^{-1} is asubgroup of G.

proof: Given H is a subgroup of a group G and $gHg^{-1} = \{ghg^{-1}/h \in H\}$

To prove that gHg^{-1} is a subgroup of G

- (i) since $e \in H$, we have $geg^{-1} \in gHg^{-1} \Rightarrow gHg^{-1} \neq \phi$
- (ii) clearly $gHg^{-1} \subseteq H$ (by def of gHg^{-1})
- $(iii) \ Let \ x,y \in gHg^{-1} \ then \ x = gh_1g^{-1}, \ \ y = \ gh_2g^{-1} \ where \ h_1,h_2 \in H$

To prove that $xy^{-1} \in gHg^{-1}$

Now
$$xy^{-1} = (gh_1g^{-1})(gh_2g^{-1})^{-1}$$

$$= (gh_1g^{-1})(gh_2^{-1}g^{-1})$$

$$= gh_1(g^{-1}g)h_2^{-1}g^{-1}$$

$$= gh_1h_2^{-1}g^{-1}$$

$$= (h_1h_2^{-1})^{-1}$$

$$= gHg^{-1} \qquad (\because h_1h_2^{-1} \in H)$$

$$\therefore xy^{-1} \in gHg^{-1}$$

 $\therefore gHg^{-1}$ is asubgroup of G

CO-SETS & LAGRANGE'S THEOREM

Co-set (def): Let (H, \cdot) be a subgroup of (G, \cdot) and $a \in G$ then the set $Ha = \{ha/h \in H\}$ is called as right co-set of H in G generated by a' and the set $aH = \{ah/h \in H\}$ is called as left co-set of H in G generated by a' and it is called as co-set of H in G generated by a'.

Note:

- 1. For addition, we have $H + a = \{h + a/h \in H\}$ is called as right co-set of H in G generated by a' and the set $a + H = \{a + h/h \in H\}$ is called as left co-set of H in G generated by a' and it is called as co-set of H in G generated by a'.
- 2. If e is the identity element of G and H < G then $eH = \{eh/h \in H\} = \{h/h \in H\} = H$ And $He = \{h/h \in H\} = \{h/h \in H\} = H$
- 3. Every subgroup H of G itself is a left and right co-sets of H in G

Ex: 1. Find the distinct right or left co-sets of $H = \{0, 4\}$ in Z_6 under Z_6

Sol: $Z_6 = \{0,1,2,3,4,5\}$, under $+_6$ is a group and $H = \{0,2,4\}$

Clearly H is a subgroup of G since $a = 0 \in H = \{0,2,4\}$

$$(i)H + 0 = \{h + 60/h \in H\} = \{0,2,4\} = H$$
 $(ii)H + 1 = \{h + 61/h \in H\} = \{1,3,5\}$

$$(iii)H + 2 = \{h + 62/h \in H\} = \{2,4,0\}$$
 $(iv)H + 3 = \{h + 63/h \in H\} = \{3,5,1\}$

$$(v)H + 4 = \{h + 64/h \in H\} = \{4,0,2\}$$
 $(vi)H + 5 = \{h + 65/h \in H\} = \{5,3,1\}$

 \therefore H + 0, H + 1 are distinct right/left cosets of H in G

2. Find the distinct right or left co-sets of $H = \{1, 4\} Z_5$ under \times_5

Sol: $Z_5 = \{1,2,3,4\}$, under \times_5 is a group and $H = \{1,4\}$

Clearly H is a subgroup of G since $a = 1 \in H = \{1,4\}$

$$(i)H1 = \{h \times_5 1/h \in H\} = \{1,4\} = H$$
 $(ii)H2 = \{h \times_5 2/h \in H\} = \{2,3\}$

$$(iii)H3 = \{h \times_5 3/h \in H\} = \{3,2\}$$
 $(iv)H4 = \{h \times_5 4/h \in H\} = \{4,1\}$

 \therefore H1, H2 are distinct right/left cosets of H in G

Note: 1. The number of distinct right or left cosets of H in $G = \frac{o(G)}{(H)}$

2. Every right or left cosets of H in G have the same number of elements. i. e (Ha) = (Hb)

 $3.G = Ha \cup Hb$

Theorem1: Let Hbe a subgroup of G and $h \in G$ then $h \in H \Leftrightarrow Hh = H = hH$

Necessary condition (\Rightarrow) : Given that H is a subgroup of G and $h \in G$ such that $h \in H$

To prove that Hh = H = hH $(Hh \subseteq H, H \subseteq Hh)$

Let $x \in Hh$ then $x = h_1h$ where $h_1 \in H$

since $h_1 \in H$, $h \in H$, H is a subgroup of $G \Rightarrow h_1 h \in H \Rightarrow x \in H$

 $\therefore Hh \subseteq H \rightarrow (1)$

Let $h_2 \in H$ and e be the identity element in G

Since H is a subgroup of G so $e \in H$

Now $h_2 = h_2 e = h_2 (h^{-1}h) = (h_2 h^{-1})h \in Hh$ $(: h_2 \in H, h^{-1} \in H, H < G \text{ so } h_2 h^{-1} \in H)$

 $\therefore H \subseteq Hh \to (2)$

From (1) (2) Hh = H

Next to prove that hH = H $(hH \subseteq H, H \subseteq hH)$

Let $y \in hH$ then $y = hh_3$ where $h_3 \in H$

since $h_3 \in H$, $h \in H$, H is a subgroup of $G \Rightarrow hh_3 \in H \Rightarrow y \in H$

 $hH \subseteq H \rightarrow (3)$

Let $h_4 \in H$ and e be the identity element in G

since H is a subgroup of G so $e \in H$

Now $h_4 = eh_4 = (hh^{-1})h_4 = h(h^{-1}h_4) \in hH$ $(:h^{-1} \in H, h_4 \in H, H < G \text{ so } h^{-1}h_4 \in H)$

 $\therefore H \subseteq hH \to (4)$

From (3) (4) hH = H

Sufficient condition (\Leftarrow): Conversely given that H is a subgroup of G and

 $h \in G$ such that Hh = H = hH

To prove that $h \in H$

Let e be the identity element in G

since H is a subgroup of G so $e \in H$

Now
$$h = he \in hH \implies h \in hH \implies h \in H$$
 (: $H = hH$)

Next
$$h = eh \in Hh = H \Longrightarrow h \in H$$

Theorem2: If a and b are two elements of a group G and H is a subgroup of G

then (i)
$$Ha = Hb \Leftrightarrow ab^{-1} \in H$$
 (ii) $aH = bH \Leftrightarrow a^{-1}b \in H$

(i) N.C (\Rightarrow): Given that H is a sub group of G such that Ha = Hb

To prove that $ab^{-1} \in H$

Let e be the identity element of G since H < G so $e \in H$

Now
$$Ha = Hb \Rightarrow Hab^{-1} = Hbb^{-1}$$

$$\Rightarrow Hab^{-1} = He = H$$

$$\Rightarrow Hab^{-1} = H$$

$$\Rightarrow ab^{-1} \in H \qquad (\because H < G, Hh = H \Leftrightarrow h \in H)$$

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that $ab^{-1} \in H$

To prove that Ha = Hb

since
$$ab^{-1} \in H \Rightarrow Hab^{-1} = H$$

 $\Rightarrow Hab^{-1}b = Hb$
 $\Rightarrow Ha = Hb$

(ii) N.C (\Rightarrow): Given that H is a subgroup of G such that aH = bH

To prove that $a^{-1}b \in H$

Let e be the identity element of G since H < G so $e \in H$

Now
$$aH = bH \Rightarrow a^{-1}aH = a^{-1}bH$$

$$\Rightarrow H = a^{-1}bH$$

$$\Rightarrow a^{-1}bH = H$$

$$\Rightarrow a^{-1}b \in H \qquad (\because H < G, hH = H \Leftrightarrow h \in H)$$

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that $a^{-1}b \in H$

To prove that aH = bH

since
$$a^{-1}b \in H \Rightarrow a^{-1}bH = H$$

$$\Rightarrow aa^{-1}bH = aH$$

$$\Rightarrow bH = aH$$

Theorem3: If a and b are two elements of a group G and H is a subgroup of G then $(i)a \in Hb \Leftrightarrow Ha = Hb \ (ii)a \in bH \Leftrightarrow aH = bH$

(i) N.C (\Rightarrow): Given that H is a subgroup of G such that $a \in Hb$

To prove that Ha = Hb

since
$$a \in Hb \Rightarrow ab^{-1} \in Hbb^{-1}$$

 $\Rightarrow ab^{-1} \in He$
 $\Rightarrow ab^{-1} \in H$ $(\because H < G, Hh = H \Leftrightarrow h \in H)$
 $\Rightarrow Ha = Hb$

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that Ha = Hb

To prove that $a \in Hb$

Let $e \in G$, since $H < G : e \in H$

Now $a = ea \in Ha$

 $\Rightarrow a \in Ha$

$$\Rightarrow a \in Hb \quad (\because Ha = Hb)$$

(ii) N.C (\Rightarrow): Given that H is a subgroup of G such that $a \in bH$

To prove that aH = bH

since
$$a \in bH \Rightarrow b^{-1}a \in b^{-1}bH$$

$$\Rightarrow b^{-1}a \in eH$$

$$\Rightarrow b^{-1}a \in H \qquad (\because H < G, hH = H \Leftrightarrow h \in H)$$

$$\Rightarrow aH = bH$$

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that aH = bH

To prove that $a \in bH$

Let $e \in G$, since $H < G : e \in H$

Now $a = ae \in aH$

 $\Rightarrow a \in aH$

 $\Rightarrow a \in bH \quad (\because aH = bH)$

Theorem4: Let H be a subgroup of G then there exist a bijection between

any two left or right cosets of H in G (OR)

Let H be a subgroup of G then there exist one — one correspondance between any two left or right coset of H in G.

Proof: Let H be a subgroup . For any $a, b \in G$.

Let aH, bH be two left cosets of H in G

Define a mapping $f: aH \rightarrow bH$ by $f(ah) = bh \ \forall ah \in aH$

(i) f is one – one and well – define: Let ah_1 , $ah_2 \in aH$ such that $(ah_1) = (ah_2)$

To prove that $ah_1 = ah_2$

since
$$(ah_1) = (ah_2) \Leftrightarrow bh_1 = bh_2$$

 $\Leftrightarrow h_1 = h_2$
 $\Leftrightarrow ah_1 = ah_2$

 \therefore f is one – one and well – defined

(ii) f is on - to: Let $bh \in bH$ then $h \in H$

For this $h \in H$, we have $ah \in aH \implies f(ah) = bh$

 $\therefore \forall bh \in bH \text{ so } \exists ah \in aH \text{ such that } f(ah) = bh$

 \therefore f is on – to

Thus f is bijective.

Theorem5: Let H be a subgroup of Gthen there is one — one correspondance between the set of all distinct left cosets of H in G and the set of all distinct

right cosets of H in G.

Proof: Let H be a subgroup of G. For any $a, b \in G$.

Let Ha, Hb be two right cosets of H in G

Let G_1 be the set of all distinct left cosets of H in G.

Let G_2 be the set of all distinct rihgt cosets of H in G.

Define a mapping $f: G_1 \to G_2$ by $(aH) = Ha^{-1} \ \forall aH \in G_1$

(i) f is one – one and well – define: Let aH, $\in G_1$ such that (aH) = f(bH)

To prove that aH = bH

since
$$(aH) = (bH) \Leftrightarrow Ha^{-1} = Hb^{-1}$$

 $\Leftrightarrow a^{-1}(b^{-1})^{-1} \in H \quad (\because Ha = Hb \Leftrightarrow ab^{-1} \in H \)$
 $\Leftrightarrow a^{-1}b \in H$
 $\Leftrightarrow a^{-1}bH = H$
 $\Leftrightarrow aa^{-1}bH = aH$
 $\Leftrightarrow bH = aH$
 $\Leftrightarrow aH = bH$

 \therefore f is one – one and well – defined

(ii)
$$f$$
 is on – to: Let $Ha \in G_2$ then $a \in G \Rightarrow a^{-1} \in G \Rightarrow a^{-1}H \in G_1$

For this $a^{-1}H \in G_1 \Longrightarrow (a^{-1}H) = (a^{-1})^{-1} = Ha$

$$\therefore \forall \ Ha \in \ G_2so \ \exists \ a^{-1}H \in G_1such \ that \ (a^{-1}H) = Ha$$

$$\therefore$$
 f is on – to

Thus f is bijective.

Index of a subgroup of a finite group: -If H is a subgroup of a group G then the number of distinct left/right co-sets of H in G is called as index of H in G and it is denoted by [G:H] or $i_G(H)$

LAGRANGE'S THEOREM: The order of a subgroup of a finite group divides the order of a group. (OR)

If H is any subgroup of a finite group G then (H)|o(G). Is the converse true? justify your answer?

Proof: Given that *H* is any subgroup of a finite group *G*

 \therefore *H* is also finite.

To prove that (H)|o(G)

If
$$H = G \Longrightarrow (H) = (G) \Longrightarrow (H)|o(G)|$$

If $H \neq G$ to prove that (H)|o(G)

Let (G) = n and (H) = m to prove that m|n

We know that every right/left co-set of H in G has the same number of elements and the number of right co-sets of H in G is also finite and also H = He, H is also right co-set of H in G.

If Ha, Hb, Hc H are right co-sets of H in G (n terms) then $(Ha) = (Hb) = (Hc) = \cdots = o(H) = m$

Let the number of distinct right co-sets of H in G be k and all these right co-sets of H in G are disjoint.

$$: G = Ha \cup Hb \cup Hc \cup ... \cup H(k \text{ times}) \Longrightarrow o(G) = o(Ha) + o(Hb) + o(Hc) + ... + o(H)$$

$$\Rightarrow n = m + m + m + \dots + m(k \text{ times}) \Rightarrow n = mk \Rightarrow k = m$$

$$\therefore m|n \Longrightarrow o(H)|o(G)$$

Hence the order of a subgroup of a finite group divides the order of a group

The converse of this theorem need not be true i.e. if G is a finite group and (H)|o(G) then H need not be a subgroup.

For example: Consider $G = \{1, -1, i, -i\}$ so o(G) = 4:

Let
$$H = \{i, -i\} hen \ o(H) = 2$$

Clearly
$$(H)|o(G)|$$
 (2|4)

But *H* is not a group as $(i) = -1 \notin H$

 \therefore H is not a subgroup of G

Theorem7: If G is a finite group and $a \in G$ then (a)|o(G)

Proof: G is a finite group and $a \in G$.

Let
$$o(a) = n$$

we know that G is a finite group and $a \in G$ such that o(a) = n

then $H = \{e = a^0, 1, a^2, \dots a^{n-1}\}$ form a group under multiplication.

Hence H is a subgroup of G such that o(H) = n

By Lagrange's theorem $o(H)|o(G) \Rightarrow n|o(G) \Rightarrow o(a)|o(G)$

Theorem8: If a is an element of a finite group G then $^{(G)}=e$ $(or)^{|G|}=e$ (OR)

If G is a finite group of order n and if $a \in G$ then $a^n = e(or)a^{|G|} = e$

Proof: Given G is a finite group of order n i.e. o(G) = n

Let $o(a) = d \Rightarrow a^d = e$ and since $o(a) \le o(G)$ (since G is finite)

we know that G is a finite group and $a \in G$ such that o(a) = d then

 $H = \{e = a^0, a^1, a^2, \dots^{-1}\}$ form a group under multiplication.

Hence H is a subgroup of G such that o(H) = d

By Lagrange's theorem $o(H)|o(G) \Rightarrow d|o(G) \Rightarrow d|n \Rightarrow n = kd$ for some $k \in \mathbb{N}$

Now
$$a^n = a^{kd} = (a^d)^k = e^k = e$$

$$\therefore a^n = e \ (or)a^{|G|} = e$$

Theorem9: Every group of prime order has no proper subgroups.

Proof: Let G be a group such that (G) = p where p is aprime.

Let H be subgroup of G such that o(H) = m

By Lagranges theorem $o(H)|o(G) \Rightarrow m|p$

Since p is a prime so m = 1 or m = p

$$\Rightarrow$$
 (H) = 1 or (H) = (G) \Rightarrow H = {e} or H = G

 $These\ are\ improper\ or\ trivial\ subgroup.$

i.e.G has only improper subgroups

Thus G has no proper subgroups

Normalizer of an element: Let G be a group and $a \in G$ then the set of all elements in G which are commutes with an element of 'a' in G and it is denoted by N(a)

$$i.e.N(a) = \{x \in G/ax = xa\}$$

Centre of a group: Let G be a group and $a \in G$ then the set of all elements in G which are commutes with every element of G and it is denoted by C(G) or Z(G)

$$i.e. C(G) = \{x \in G / ax = xa \ \forall a \in G\}$$

Theorem 10: Let G be a group and $a \in G$ then (a)a subgroup of G

Proof:
$$(a) = \{x \in G / ax = xa\}$$

To prove that N(a) is a subgroup of G

(i) Since
$$e \in G$$
, we have $ae = ea$

$$: e \in N(a) \Longrightarrow N(a) \neq \emptyset$$

(ii) Clearly (a)
$$\subseteq$$
 G (by def of (a))

(iii) Let
$$x, y \in N(a)$$
 then $ax = xa$ and $ay = ya$

To prove that $xy^{-1} \in (a)$.

For this we have to show that $(xy^{-1}) = (xy^{-1})$

First we prove that $y^{-1} \in (a)$

$$since ay = ya$$

$$\Rightarrow y^{-1}(ay)y^{-1} = y^{-1}(ya)y^{-1}$$

$$\Rightarrow y^{-1}(yy^{-1}) = (y^{-1}y)ay^{-1}$$

$$\Longrightarrow y^{-1}a=ay^{-1}$$

$$\Rightarrow y^{-1} \in (a)$$

$$Now(xy^{-1}) = (ax)^{-1}$$

$$= (xa)^{-1}$$

$$=(ay^{-1})$$

$$= (y^{-1}a)$$
$$= (xy^{-1})$$

$$\therefore (xy^{-1}) = (xy^{-1}) \Longrightarrow xy^{-1} \in (a)$$

 $\therefore N(a)$ is a subgroup of G

UNIT-3: NORMAL SUBGROUPS

Normal subgroup (def): -A subgroup H of a group is said to be a normal subgroup G if $\forall h \in H$ and $\forall x \in G \implies xhx^{-1} \in H$. It is denoted by $H \triangleright G$ we read it as H is a normal subgroup of G

Note: From the def of normal subgroup. We observe that

$$1.H \rhd G \Leftrightarrow xHx^{-1} \subseteq H, \forall x \in G \quad (\because xHx^{-1} = \{xhx^{-1}/h \in H\})$$

$$2.H \triangleright G \iff x^{-1}Hx \subseteq H, \forall x \in G \quad (: x \in G \implies x^{-1} \in G, \triangleright G)$$

3. Every group contains at least two normal subgroups $\{e\}$ and G itself is called as improper or trivial normal subgroups of G. If any other normal subgroups exist then it is called as proper or non-trivial normal subgroups.

Theorem1: A subgroup H of group G is a normal subgroup of $G \Leftrightarrow$

$$xHx^{-1} = H \ \forall x \in G$$

N.C (\Longrightarrow) : Given that H is a normal subgroup of G

To prove that $xHx^{-1} = H \ \forall x \in G$

Since H is normal subgroup of $G \implies xHx^{-1} \subseteq H$, $\forall x \in G \rightarrow (1)$

since
$$xHx^{-1} \subseteq H$$
, $\forall x \in G$

$$\implies x^{-1}(x^{-1})^{-1} \subseteq H, \ \forall x \in G$$

$$\implies x^{-1}Hx \subseteq H, \ \forall x \in G$$

$$\implies (x^{-1}Hx)^{-1} \subseteq xHx^{-1}, \ \forall x \in G$$

$$\Rightarrow$$
 $(^{-1})H(xx^{-1}) \subseteq xHx^{-1}, \ \forall x \in G$

$$\Rightarrow H \subseteq xHx^{-1}, \ \forall x \in G \rightarrow (2)$$

From (1) (2)
$$xHx^{-1} = H$$
 $\forall x \in G$

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that $xHx^{-1} = H \ \forall x \in G$

To prove that His a normal subgroup of G

since
$$xHx^{-1} = H \ \forall x \in G \Longrightarrow x^{-1}Hx \subseteq H \ and \ H \subseteq xHx^{-1} \ \forall x \in G$$

$$x^{-1}Hx \subseteq , \forall x \in G \Longrightarrow H \text{ is a normal subgroup of } G$$

Theorem2: A subgroup H of a group G is a normal subgroup of $G \Leftrightarrow$ each left coset of H in G is a right coset of H in G

N.C (\Longrightarrow) : Given that H is a normal subgroup of G

To prove that each left coset of H in G is a right coset of H in G

Since H is normal subgroup of $G \implies xHx^{-1} = H$, $\forall x \in G$

 $\implies (xHx^{-1}) = Hx, \ \forall x \in G$

 \Rightarrow $(xH)^{-1}x = Hx, \ \forall x \in G$

 $\implies xH = Hx, \ \forall x \in G$

S.C (\Leftarrow) : Conversely given that H is a subgroup of G such that

each left coset of H in G is a right coset of H in G

To prove that His a normal subgroup of G

Let $x \in G$ then xH = Hy for some $y \in H$

since $e \in H$, so $x = xe \in xH$

 $\Rightarrow x \in xH$

 $\Rightarrow x \in Hy \ (:xH = Hy)$

 $\Rightarrow xy^{-1} \in Hyy^{-1}$

 $\Rightarrow xy^{-1} \in H$

 $\Rightarrow Hx = Hy$

 $\Rightarrow Hx = xH$

 $\Rightarrow Hxx^{-1} = xHx^{-1}$

 $\Rightarrow H = xHx^{-1}$

 $\implies xHx^{-1} = H \ \forall x \in G$

∴ His a normal subgroup of G

Theorem3: A subgroup H of a group G is a normal subgroup of $G \Leftrightarrow$ The product of two right cosets of H in G is again a right coset of H in G

N.C (\Longrightarrow) : Given that H is a normal subgroup of G

To prove that the product of two right cosets of H in G is again a right coset of H in G.

For any $a, b \in G$ then Ha, Hb be two right cosets of H in G.

Now
$$(Ha)(Hb) = H(aH)b$$

$$= H(Ha)b \qquad (\because H \rhd G \Leftrightarrow Ha = aH)$$

$$= HHab$$

$$= Hab \qquad (\because H < Gthen HH = H)$$

 $since \ a \in G, b \in G \Longrightarrow ab \in G$

∴ Hab is a right coset of H in G

S.C (\Leftarrow): Conversely given that H is a subgroup of G such that the product of two right cosets of H in G is again a right coset of H in G

To prove that H is a normal subgroup of G i.e. $\forall h \in H, \forall x \in G \implies xhx^{-1} \in H$ Let $h \in H$ and $x \in G$

Now
$$xhx^{-1} = (hx^{-1}) \in HxHx^{-1}$$

 $\Rightarrow xhx^{-1} \in HxHx^{-1}$
 $\Rightarrow xhx^{-1} \in Hxx^{-1} \quad (\because Ha \cdot Hb = Hab)$
 $\Rightarrow xhx^{-1} \in He$
 $\Rightarrow xhx^{-1} \in H$

Thus H is a normal subgroup of G

 $\therefore \forall h \in H, \forall x \in G \Longrightarrow xhx^{-1} \in H$

Theorem4: Every subgroup of an abelian is always normal subgroup

Proof: Let *G* be an abelian group and *H* be a subgroup

To prove that H is a normal subgroup of G (i.e. $\forall h \in H, \forall x \in G \implies xhx^{-1} \in H$)

Let $h \in H$, and $x \in G$

$$xhx^{-1} = (x^{-1}h)$$
 (: $x \in G \Rightarrow x^{-1} \in G, h \in H \Rightarrow h \in G \Rightarrow h^{-1}x = x^{-1}h, G \text{ is abelian}$)
$$= (xx^{-1})h$$

$$= eh$$

$$= h \in H$$

 $\therefore xhx^{-1} \in H$ $\therefore H$ is a normal subgroup of G

Theorem5: The intersection of any two normal subgroups of a group is a normal subgroup (OR)

Let H, K be two normal subgroups of a group G then G then G then G is also normal subgroup of G.

Proof: Let H, are two normal subgroups of a group G

To prove that $H \cap K$ is a normal subgroup of G

(i) Since H, K are two subgroups of G

$$\therefore \ e \in H \ and \ e \in K \Longrightarrow e \in H \cap K \ \Longrightarrow H \cap K \ \neq \phi$$

$$(ii)Clearly \ H \cap K \subseteq G \ (\because H \subseteq G, K \subseteq G)$$

(iii) Let
$$a, b \in H \cap K \implies a, b \in H$$
 and $a, b \in K$

Since $a, b \in H$, H is a subgroup of $G \Rightarrow ab^{-1} \in H$

also since $a,b \in K$, K is a subgroup of $G \Longrightarrow ab^{-1} \in K$

$$\therefore ab^{-1} \in H \ and \ ab^{-1} \in K \Longrightarrow ab^{-1} \in H \cap K$$

 $\therefore \, H \cap K \, is \, a \, subgroup \, of \, G$

Let
$$x \in G$$
, $y \in H \cap K \implies y \in H$ and $y \in K$

$$since \ x \in G, y \in \ , \ \rhd G \Longrightarrow xyx^{-1} \in H$$

Also $x \in G$, $y \in , \rhd G \Longrightarrow xyx^{-1} \in K$

 $xyx^{-1} \in H \cap K \quad \forall x \in G, \ \forall y \in H \cap K$

 $\therefore H \cap K$ is a normal subgroup of G

Theorem6: Let N and M be normal subgroups of a group G then M is a normal subgroup of G.

Proof: Since N is a normal subgroup of G, have $Na = aN \quad \forall a \in G$

In particular for any $a \in M$, NM = MN and

hence NM is a subgroup of G (: H < G, K < G then $HK < G \Leftrightarrow HK = KH$)

For any $a \in G$, we have

$$(NM)a = N(Ma)$$

 $= N(aM)$ (: M is a normal)
 $= (Na)M$
 $= (aN)M$ (: N is a normal)
 $= a(NM)$

 \therefore $(NM)a = a(NM) \Rightarrow NM$ is a normal subgroup of G

Theorem7: If G is a group and H is a subgroup of index 2 in G then H is a normal subgroup of G.

Let H be a subgroup of a group G such that there are exactly two left cosets of H in G then prove that every right coset of H in G is a left coset and vice - versa

Proof: Given that H is a subgroup of index 2

 $\because \textit{The number of distinct right or left cosets of H in G is 2}$

To prove that H is a normal subgroup of G.

For this we have to show that $xH = Hx \ \forall x \in G$

Let $x \in G$

If $x \in H$ then xH = Hx $(H < G, h \in H \Leftrightarrow hH = Hh = H)$

 \therefore H is a normal subgroup of G

If $x \notin H$ then $xH \neq H \neq Hx$ ($h \notin H \Leftrightarrow hH \neq Hh \neq H$)

Since index of H in G is 2

$$: G = xH \cup H = Hx \cup H$$

= There is no element in common Hx and H also xH and H

 \therefore We must have $Hx = xH \Rightarrow H$ is a normal subgroup of G

Simple group: A group G is said to be simple if it has no proper normal subgroups.

Theorem8: Every group of prime order is simple

Proof: Let G be a group such that (G) = p where p is aprime.

Let H be subgroup of G such that o(H) = m

By Lagranges theorem $o(H)|o(G) \Rightarrow m|p$

Since p is a prime so m = 1 or m = p

$$\Rightarrow$$
 (H) = 1 or (H) = (G) \Rightarrow H = {e} or H = G

These are improper or trivial normal subgroup.

i.e. G has only improper normal subgroups

Thus G has no proper normal subgroups

Thus G is a simple group.

Centre of a group: Let G be a group and $a \in G$ then the set of all elements in G

which are commutes with every element of G and it is denoted by C(G) or Z(G)

$$i.e.C(G) = \{x \in G / ax = xa \ \forall a \in G\}$$

Theorem9: Let G be a group and $a \in G$ then (G) is a normal subgroup of G

Proof:
$$(G) = \{x \in G / ax = xa \ \forall a \in G\}$$

To prove that C(G) is a normal subgroup of G

(i) Since $e \in G$, we have $ae = ea \ \forall a \in G$

$$: e \in C(G) \Longrightarrow C(G) \neq \phi$$

(ii)Clearly $(G) \subseteq G$ $(by \operatorname{def} of (G))$

(iii)Let $x, y \in C(G)$ then ax = xa and ay = ya

To prove that $xy^{-1} \in (G)$

For this we have to show that $(xy^{-1}) = (xy^{-1})$

First we prove that $y^{-1} \in (G)$

since ay = ya

$$\Rightarrow y^{-1}(ay)y^{-1} = y^{-1}(ya)y^{-1}$$

$$\Rightarrow y^{-1}(yy^{-1}) = (y^{-1}y)ay^{-1}$$

$$\Rightarrow y^{-1}a = ay^{-1}$$

$$\Rightarrow y^{-1} \in (G)$$

$$Now(xy^{-1}) = (ax)^{-1}$$

$$= (xa)^{-1}$$

$$=(ay^{-1})$$

$$= (y^{-1}a)$$

$$=(xy^{-1})$$

$$\therefore (xy^{-1}) = (xy^{-1}) \Longrightarrow xy^{-1} \in (G)$$

 \therefore C(G) is a subgroup of G

Now we show that C(G) is a normal subgroup of G

Let $a \in G, x \in C(G)$

Now
$$axa^{-1} = (ax)^{-1} = (xa)a^{-1} = x(aa^{-1}) = xe = x \in C(G)$$

 $\therefore axa^{-1} \in (G) \Longrightarrow (G)$ is a normal subgroup of G

Theorem10: Let H be a normal subgroup of G then the set $\frac{G}{H} = \{Ha/a \in G\}$

is a group under coset multiplication

Proof: Given that H is a normal subgroup of G.

For $a \in G$, Ha = aH

The set $\frac{G}{H} = \{Ha/a \in G\} = The set of all cosets of H in G$

Define a coset multiplication by $Ha \cdot Hb = Hab \ \forall Ha, Hb \in \frac{G}{H}$

To prove that $_{_H} = \{Ha/a \in G\}$ is a group under coset multiplication.

(i) By closure property: Let $Ha, Hb \in H$ where $a, b \in G$

$$Now\, Ha\cdot Hb = Hab \in {}_{_H} \ \ (\because a,b \in G \Longrightarrow ab \in G)$$

∴' ·' is a binary operation

(ii) Associative property: Let Ha, Hb, $Hc \in H$

$$(Ha \cdot Hb) \cdot Hc = Hab \cdot Hc$$

$$= H(ab \cdot c)$$

$$= Ha \cdot (bc)$$

$$= Ha \cdot (Hbc)$$

(iii) Identity property: We have $e \in G \Rightarrow He \in H$

 $= Ha \cdot (Hb \cdot Hc)$

Let $Ha \in H$

Now He \cdot *Ha* = *Hea* = *Ha*

 $also\ Ha \cdot He = Hae = Ha$

 \therefore He is the identity element in

(iv) Inverse property: Let $Ha \in \frac{G}{H} \Rightarrow a \in G$

$$\Longrightarrow a^{-1} \in G$$

$$\Rightarrow Ha^{-1} \in \frac{G}{H} Now Ha \cdot Ha^{-1} = Haa^{-1} = He$$

 \therefore Ha^{-1} is the inverse of Ha

 \therefore Every element in $\frac{G}{H}$ has multiplicative inverse.

Hence $\frac{G}{H} = \{Ha/a \in G\}$ is a group under coset multiplication.

Quotient group or factor group: Let H be a normal subgroup of G then the

 $set_{_H} = \{ Ha/a \in G \} \ is \ a \ group \ under \ coset \ multiplication \ is \ called \ as \ Quotient \ group \ .$

Theorem11: Every quotient group of an abelian group is abelian.

Proof: Given that H is a normal subgroup of G.

For $a \in G$, Ha = aH

The set $_{_{H}} = \{Ha/a \in G\} = The set of all cosets of Hin G$

Define a coset multiplication by $Ha \cdot Hb = Hab \ \forall Ha, Hb \in Hab \ \forall Ha \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha, Hb \in Hab \ \forall Ha$

To prove that $_{_H} = \{Ha/a \in G\}$ is a group under coset multiplication.

(i) By closure property: Let $Ha, Hb \in {}_{H}$ where $a, b \in G$

Now $Ha \cdot Hb = Hab \in {}_{H} (:: a, b \in G \Longrightarrow ab \in G)$

 \therefore is a binary operation

(ii) Associative property: Let Ha, Hb, $Hc \in H$

$$(Ha \cdot Hb) \cdot Hc = Hab \cdot Hc$$

$$= H(ab \cdot c)$$

$$= Ha \cdot (bc)$$

$$= Ha \cdot (Hbc)$$

$$= Ha \cdot (Hb \cdot Hc)$$

(iii) Identity property: We have $e \in G \implies He \in \frac{G}{H}$

Let $Ha \in \frac{G}{H}$

Now He
$$\cdot$$
 Ha = *Hea* = *Ha*

$$also\ Ha \cdot He = Hae = Ha$$

 \therefore He is the identity element in $\frac{G}{H}$

(iv)Inverse property: Let $Ha \in \frac{G}{H} \Rightarrow a \in G$

$$\Longrightarrow a^{-1} \in G$$

$$\Rightarrow$$
 $Ha^{-1} \in {}_{H} Now Ha \cdot Ha^{-1} = Haa^{-1} = He$

- \therefore Ha^{-1} is the inverse of Ha
- $\because \textit{Every element in }_{\textit{H}} \textit{ has multiplicative inverse}. \\$

Hence $_{_H} = \{Ha/a \in G\}$ is a group under coset multiplication.

(v)Commutative property: Let $Ha, Hb \in H$

Now
$$Ha \cdot Hb = Hab$$

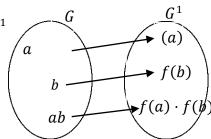
= Hba (: G is n abelian)
= $Hb \cdot Ha$

 $\div_{_{H}} = \{ \mathit{Ha/a} \in \mathit{G} \} \ \mathit{is an abelian group}$

UNIT-4: HOMOMORPHISM FOR GROUPS

Homomorphism: Let G, G^1 be two groups. A mapping $f: G \to G^1$

is said to be homomorphism if $(a \cdot b) = (a) \cdot (b)$



Homomorphic image set: If $f: G \to G^1$ is a homomorphism then the image of G is called as homomorphic image set. i.e. $(G) = \{(a) \in G^1 / a \in G\}$

Monomorphism: A homomorphism $f: G \to G^1$ is said to be monomorphism if f is one-one mapping.

Epimorphism: A homomorphism $f: G \to G^1$ is said to be Epimorphism if f is on-to mapping.

Isomorphism: A homomorphism $f: G \to G^1$ is said to be isomorphism if f is one-one and on-to mapping.

Endomorphism: If $f: G \to G$ is a homomorphism then f is called as endomorphism.

Automorphism: If $f: G \to G$ is an isomorphism then f is called as Automorphism.

Notations: If $f: G \to G^1$ is a homomorphism then G^1 is the homomorphic image of G

(I.e. f is homo and onto) we write $G^1 \simeq G$ (i.e. G^1 is the homomorphic image of G)

If $f:G\to G^1$ is an isomorphism then G^1 is the isomorphic image of G and G, G^1 are isomorphic images to each other. We write $G^1\cong G$

Theorem 1: Let $f: G \to G^1$ be a homomorphism then

 $(i) f(e) = e^1$ where e, e^1 are identity elements of G and G^1 respectively

$$(ii)f(a^{-1}) = [f(a)]^{-1} \ \forall a \in G$$

Proof: Given that $f: G \to G^1$ is a homomorphism

(i)since $e \in G$, we have $e \cdot e = e$

$$\Rightarrow f(e \cdot e) = f(e)$$
 (: f is mapping)

$$\Rightarrow f(e) \cdot f(e) = f(e)$$
 (: f is homo)

$$\Rightarrow (e)\cdot (e)=(e)\cdot e^1 \qquad (\because f(e)\in G^1, e^1\in G^1)$$

$$\Rightarrow$$
 $(e) = e^1 \quad (:By l.c.l)$

(ii)Let
$$a \in G \Longrightarrow a^{-1} \in G$$
 such that $aa^{-1} = e = a^{-1}a$

$$\therefore aa^{-1} = e$$

$$\Rightarrow$$
 $(aa^{-1}) = (e)$

$$\Rightarrow$$
 $(a)(a^{-1}) = e^1$

$$by(i)f(e) = e^1$$

$$\Rightarrow$$
 $(a^{-1}) = [(a)]^{-1}$

Theorem2: The homomorphic image of a group is also a group.

(OR)

If f is homomorphism from a group G into a group G^1 then $((G),\cdot)$ is a subgroup of G^1

Proof: Given that $f: G \to G^1$ is a homomorphism

 $(G) = \{(a) \in G^1 / a \in G\} = Homomorphic image set$

To prove that (G) is group. For this we have to show that (G) is a subgroup of G^1 since (i): $G \to G^1$ is a homo, we have (e) = e^1

$$\Rightarrow e^1 = (e) \in (G)$$

$$\Rightarrow e^1 \in (G) \Rightarrow (G) \neq \phi$$

(ii) By the definition of (G) $clearly(G) \subseteq G^1$

(iii) Let a^1 , $^1 \in f(G)$ so $\exists a, b \in G$ such that $f(a) = a^1$, $f(b) = b^1$

Now $a^1(b^1)^{-1} = f(a)[f(b)]^{-1}$

$$=(a)(b^{-1})$$

$$= (ab^{-1})$$

$$=(ab^{-1})\in (G)$$

$$\stackrel{.}{.} a^1(b^1)^{-1} \in f(G)$$

 $\therefore (G) \ is \ subgroup \ of \ G^1$

Hence f(G) is a group

Theorem3: The homomorphic image of an abelian group is also an abelian group

Proof: Given that $f: G \to G^1$ is a homomorphism

 $(G) = \{(a) \in G^1/a \in G\} = Homomorphic image set$

To prove that f(G) is an abelian group.

For this we have to show that (G) is a subgroup of G^1

since (i): $G \rightarrow G^1$ is a homo, we have $(e) = e^1$

$$\Rightarrow e^1 = (e) \in (G)$$

$$\Rightarrow e^1 \in (G) \Rightarrow (G) \neq \phi$$

(ii) By the definition of (G) $clearly(G) \subseteq G^1$

(iii) Let a^1 , $^1 \in f(G)$ so $\exists a, b \in G$ such that $f(a) = a^1$, $f(b) = b^1$

Now
$$a^{1}(b^{1})^{-1} = f(a)[f(b)]^{-1}$$

= $(a)(b^{-1})$

$$=(ab^{-1})$$

$$=(ab^{-1})\in (G)$$

$$\stackrel{.}{\cdot} a^1(b^1)^{-1} \in f(G)$$

: (G) is subgroup of G^1

Hence f(G) is a group

(iv)Commutative property: Let a^1 , $^1 \in f(G)$ so $\exists \ a,b \in G \ such that \ f(a) = a^1$, $f(b) = b^1$

Now
$$a^1 \cdot b^1 = (a)(b)$$

$$= f(ab)$$

$$= f(ba) \quad (\because G \text{ is an abelian })$$

$$= f(b)f(a)$$

$$= b^1 \cdot a^1$$

 \div The homomorphic image of an abelian group is also an abelian group

Kernel of a homomorphism: Let $f: G \to G^1$ be a homomorphism then

the set of elements in G which are mapped with the identity element of G^1

is called as kernel of the homomorphism. It is denoted by Ker f

 $Kerf = \{x \in G/(x) = e^1 \text{ where } e^1 \text{ is the identity element in } G^1\}$

Note: $1. p \in kerf \Leftrightarrow (p) = e^1$

$$2.f: G \rightarrow G^1$$
 is a homo, we have $(e) = e^1 \implies e \in kerf \implies kerf \neq \phi$

3. By the defintion of kerf, arly $kerf \subseteq G$

Theorem4: If $f: G \to G^1$ is homomorphism then kerf is a normal subgroup of G.

Proof: Given that $f: G \to G^1$ is a homomorphism

$$Kerf = \{x \in G/(x) = e^1 \text{ where } e^1 \text{ is the identity element in } G^1\}$$

To prove that kerf is a normal subgroup of G

(i) since
$$f: G \to G^1$$
 is a homo, we have $(e) = e^1 \Longrightarrow e \in kerf \Longrightarrow kerf \neq \phi$

(ii). By the defintion of kerf, clearly $kerf \subseteq G$

$$(iii) Let \ a,b \in kerf \Longrightarrow (a) = e^1, (b) = e^1$$

To prove that $ab^{-1} \in kerf$ $(i.e.(ab^{-1}) = e^1)$

Now
$$(ab^{-1}) = (a)(b^{-1})$$

= $(a)[f(b)]^{-1}$
= $e^{1}(e^{1})^{-1}$
= e^{1}

$$\therefore ab^{-1} \in kerf$$

(iv) Let
$$a \in G, x \in kerf \implies (x) = e^1$$

To prove that $axa^{-1} \in kerf$ $(i.e.(axa^{-1}) = e^1)$

Now
$$(axa^{-1}) = (a)(x)f(a^{-1})$$

= $(a)(x)[f(a)]^{-1}$
= $(a)^{1}[f(a)]^{-1}$

$$= (a)[f(a)]^{-1}$$
$$= e^1$$

- $\therefore axa^{-1} \in kerf$
- \therefore kerf is a normal subgroup of G

Problems:

1. If G is a group of non - zeo real numbers under multiplication then prove that

$$\phi: G \to G$$
 where $(x) = x^2 \ \forall x \in G$ is homo, determine kernel ϕ

sol: Given that
$$\phi: G \to G$$
 by $(x) = x^2 \ \forall x \in G$

Let
$$a, b \in G \implies (a) = a^2$$
 and $(b) = b^2$ also $ab \in G \implies (ab) = a^2b^2$

Now
$$(ab) = a^2b^2 = (a)(b)$$

 $\therefore \phi$ is homomorphism

$$ker\phi = \{x \in G/(x) = e^1 \text{ where } e^1 \text{ is the identity element in } G\}$$

$$= \{x \in G/x^2 = 1\}$$

$$= \{x \in G/x = \pm 1\}$$

$$\therefore ker\phi = \{\pm 1\}$$

 $2.(\mathbb{Z},+)$ is agroup of integers. $P.T f: \mathbb{Z} \to \mathbb{Z}$ by $(x) = 2x \ \forall x \in \mathbb{Z}$ is a homo and also find kerf?

Sol: Given tha
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $(x) = 2x \ \forall x \in \mathbb{Z}$

Let
$$x, y \in \mathbb{Z} \Longrightarrow x + y \in \mathbb{Z}$$

$$\therefore (x) = 2x, (y) = 2y$$

$$(x + y) = 2(x + y)$$
$$= 2x + 2y$$
$$= f(x) + f(y)$$

 \therefore f is homomorphism

$$kerf = \{x \in G/(x) = e^1 \ where \ e^1 \ is \ the \ identity \ element \ in \ \mathbb{Z}\}$$

$$= \{x \in \mathbb{Z}/2x = 0\}$$
$$= \{x \in \mathbb{Z}/x = 0\}$$

- $\therefore kerf = \{0\}$
- 3. If G is a group under multiplication and $\phi: G \to G$ is defined by $(x) = x^{-1} \quad \forall x \in G$ then show that ϕ is not homomorphism.

Sol: Given that $\phi: G \to G$ by $(x) = x^{-1} \ \forall x \in G$

Let
$$x, y \in G \Longrightarrow (x) = x^{-1}$$
 and $(y) = y^{-1}$ also $xy \in G \Longrightarrow (xy) = (xy)^{-1}$

Now
$$(xy) = (xy)^{-1} = y^{-1}x^{-1} = \phi(y)\phi(x) \neq \phi(x)\phi(y)$$

- $\therefore \phi$ is not a homomorphism
- 4. If G is a group under addition and $f: G \to G$ is defined by $(a) = a + 2 \quad \forall a \in G$ then show that ϕ is not homomorphism.

Sol: Given that $f: G \to G$ by $(a) = a + 2 \quad \forall a \in G$

Let
$$a, b \in G \Longrightarrow (a) = a + 2$$
 and $(b) = b + 2$ also $a + b \in G \Longrightarrow (a + b) = a + b + 2$

$$Now (a + b) = a + b + 2$$

$$(a) + (b) = a + 2 + b + 2 \neq (a + b)$$

- \therefore f is not a homomorphism
- 5. If $f: G \to G$ defined by $(x) = \{-1, x < 0 \text{ where } G \text{ is set of non } -z \text{ ero real numbers} \}$ and $G = \{-1,1\}$ are groups under multiplication. P.T f is homo and find kerf.

Sol: Given that
$$f: G \to G$$
 defined by $(x) = \{-1, x < 0\}$

Toprove that f is homo

Let
$$x, y \in G$$

$$c(i)$$
 If $x > 0$, $y > 0 \Rightarrow xy > 0$

$$f(x) = 1, (y) = 1 \text{ and } f(xy) = 1 \text{ and also } f(x)f(y) = 1.1 = 1$$

$$\therefore f(xy) = f(x)f(y) \Longrightarrow f \text{ is homo}$$

$$c(ii)$$
 If $x < 0, y < 0 \Rightarrow xy > 0$

$$f(x) = -1, (y) = -1 \text{ and } f(xy) = 1 \text{ and also } f(x)f(y) = (-1)(-1) = 1$$

$$f(xy) = f(x)f(y) \Rightarrow f \text{ is homo}$$

$$c(iii)$$
 If $x < 0, y > 0 \Rightarrow xy < 0$

$$f(x) = -1, (y) = 1$$
 and $f(xy) = -1$ and also $f(x)f(y) = (-1)1 = -1$

$$f(xy) = f(x)f(y) \Rightarrow f$$
 is homo

$$c(iv)$$
 If $x > 0$, $y < 0 \Rightarrow xy < 0$

$$f(x) = 1, (y) = -1 \text{ and } f(xy) = -1 \text{ and also } f(x)f(y) = 1. (-1) = -1$$

$$f(xy) = f(x)f(y) \Rightarrow f \text{ is homo}$$

In all above 4 cases $(xy) = (x)(y) \Rightarrow f$ is homo

$$kerf = \{x \in G/(x) = e^1 \text{ where } e^1 \text{ is the identity element in } G\}$$
$$= \{x \in \mathbb{R} - \{0\}/f(x) = 1\}$$

$$= \{ x \in \mathbb{R} - \{0\}/x > 0 \}$$

$$\therefore kerf = \{\mathbb{R}^+\}$$

6. If $f: G \to G$ defined by $(x) = \{-1, x > 0 \text{ where } G \text{ is set of non } -z \text{ ero real numbers } \}$

and $\{-1,1\}$ are groups under multiplication. P.T f is homo and find kerf Ans) $\{\mathbb{R}^-\}$

7. If G is a group under multiplication and $f: G \to G$ is defined by $(x) = x^{-1} \ \forall x \in G$

P.T f is one – one and on – to. Also prove that f is homo if f G is abelian.

Sol: Given $f: G \to G$ is defined by $(x) = x^{-1} \ \forall x \in G$

(i) fis one – one: Let $x, y \in G$ such that f(x) = f(y)

To prove that x = y

since
$$(x) = (y) \Rightarrow x^{-1} = y^{-1}$$

$$\Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1}$$

$$\Rightarrow x = y$$

(ii) f is on - to: Let $y \in G$ (co - domain) $\exists y^{-1} \in G$ (domain).

For this $y^{-1} \in G$ we have $(y^{-1}) = (y^{-1})^{-1} = y$

$$\therefore \forall y \in G \; \exists \; y^{-1} \in G \; \ni (y^{-1}) = y \Longrightarrow f \; is \; on - to$$

Next prove that f is homo if f G is abelian

N. $C(\Rightarrow)$: Given that f is homo.

To prove that G is abelian (i.e. $xy = yx \ \forall x, y \in G$)

Let
$$x, y \in G \implies xy \in G$$

since f is homo $\Rightarrow f(xy) = f(x)f(y)$

$$\Rightarrow (xy)^{-1} = x^{-1}y^{-1}$$

$$\Rightarrow y^{-1}x^{-1} = x^{-1}y^{-1}$$

$$\Rightarrow (y^{-1}x^{-1})^{-1} = (x^{-1}y^{-1})^{-1}$$

$$\Rightarrow xy = yx$$

S.C (\Leftarrow) : Conversely given that G is an abelian.

To prove that f is homo

Let
$$x, y \in G \Longrightarrow xy \in G :: (x) = x^{-1}, (y) = y^{-1},$$
 and $(xy) = (xy)^{-1}$

Now
$$(xy) = (xy)^{-1}$$

= $y^{-1}x^{-1}$
= $x^{-1}y^{-1}$
= $f(x)f(y)$

 \therefore f is homo

8. If for a group $G_i: G \to G$ is given by $f(x) = x^2$ is a homomorphism.

P.T G is abelian.

Sol: Given that $f: G \to G$ by $(x) = x^2 \ \forall x \in G$

To prove that G is abelian(i.e. $xy = yx \forall x, y \in G$)

Let
$$x, y \in G \Longrightarrow xy \in G$$

since f is homo $\Rightarrow f(xy) = f(x)f(y)$

$$\Rightarrow (xy)^2 = x^2y^2$$

$$\Rightarrow$$
 $(xy)(xy) = (xx)(yy)$

$$\Rightarrow x(yx)y = x(xy)y$$

$$\Rightarrow xy = yx$$
 : G is abelian

9. Show that the groups $G = (\{0,1,2,3\}, +_4), G^1 = (\{1,-1,i,-i\},\cdot)$ are isomorphic.

Sol:
$$G = (\{0,1,2,3\}, +_4)$$

•	1	-1	i	- i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

 $G^1 = (\{1, -1, i, -i\}, \cdot)$

we have to find an isomorphism $f: G \to G^1$

The identity in G is 0 and the identity in G^1 is 1.

Let
$$(0) = 1$$
 also $(a) = [(a)]^{-1} \ \forall a \in G$

Define(1) = i

$$(3) = (1^{-1}) = [(1)]^{-1} = (i)^{-1} = -i \text{ and } f(2) = -1$$

$$[(2) = (2^{-1}) = [(2)]^{-1} = (-1)^{-1} = -1]$$

$$\therefore$$
 (0) = 1, (1) = i, $f(2) = -1$, $f(3) = -i$

Let $a, b \in G \Longrightarrow a +_4 b \in G$

$$(a+_4b) = f(a)f(b)$$

For example
$$(0+42) = (2) = -1$$
 and $(0)f(2) = 1(-1) = -1$

 \therefore f is homo.

f is one - **one** : different elements have different images

f is on – to: For all $y \in G^1$ so \exists atleast one element x in G such that (x) = y

 $f: G \to G^1$ is an isomorphism such that $f: G \to G^1$ is a such that $f: G \to G^1$ is a such that $f: G \to G^1$ is a suc

 $: G^1 \cong G$

Theorem 5: If f is homomorphism from a group G onto a group G^1 with kerf then f is one-one $\iff kerf = \{e\}$

 $N. (\Longrightarrow)$: Given that $f: G \to G^1$ is an isomorphism

To prove that $kerf = \{e\}$

Let $a \in Kerf$ then $(a) = e^1$

Since f is homo. we have $(e) = e^1$

$$f(a) = f(e) \Rightarrow a = e \ (f \text{ is one } - \text{ one})$$

 $\therefore kerf = \{e\}$

S.C (\Leftarrow): Conversely given that f is homomorphism from a group G onto a group G^1 with $kerf = \{e\}$.

To prove that f is one — one

Let $a, b \in G$ such that f(a) = f(b)

To prove that a = b

Since
$$f(a) = f(b) \Rightarrow f(a)[f(b)]^{-1} = f(b)[f(b)]^{-1}$$

$$\Rightarrow (a)(b^{-1}) = e^{1}$$

$$\Rightarrow (ab^{-1}) = e^{1}$$

$$\Rightarrow ab^{-1} \in kerf = \{e\}$$

$$\Rightarrow ab^{-1} = e$$

$$\Rightarrow a = b$$

 $\therefore f \text{ is one } - \text{one}$

Thorem6: The set of all automorphism of a group G from a group G w.r.t composition mapping is group.

Proof: Let $A(G) = \{f/f \text{ is an isomorphism } f \text{ rom } G \text{ to } G\}$

Let'o'be the composition of bijection over G

To prove that A(G) is a group when ' \circ '

(i) Closure property: Let $f, g \in A(G) \Rightarrow f, g$ are bijection

 \Rightarrow gof is also bijection

Let $a, b \in G \implies ab \in G$

Now
$$gof(ab) = g[f(ab)]$$

$$=g[f(a)f(b)]$$

$$= g[f(a)]g[f(b)]$$

$$= gof(a).gof(b)$$

 \therefore gof is homomorphism \Rightarrow gof \in A(G)

(ii) Associative property: We know that composition of a mapping in A(G) is an associative.

(iii) *Identity property*: Let $I: G \to G$ be the identity mapping.

Since I is one — one and on — to and structure is preserving i.e. $I \in A(G)$

Let $f \in A(G) \Rightarrow f$ is bijection and f is homo.

we have $foI = Iof = f \Rightarrow Identity \ exists \ in \ A(G) \ and \ it \ is \ I$

(iv) Inversproperty: Let $f \in A(G) \Rightarrow f$ is one – one and on – to

$$\Longrightarrow f^{-1}$$
 is also one — one and on — to

we have to show that f^{-1} is homo.

Let
$$f^{-1}(a) = a^1, f^{-1}(b) = b^1$$
 for $a^1, b^1 \in G$

$$\Rightarrow$$
 $(a^1) = a, (b^1) = b$

Now
$$f^{-1}(ab) = f^{-1}(f(a^1)f(b^1))$$

$$= f^{-1}(f(a^1b^1))$$

$$= a^{1}b^{1}$$
$$= f^{-1}(a).f^{-1}(b)$$

 $\therefore f^{-1}$ is homo

we have $f^{-1}of = fof^{-1} = I$

 f^{-1} is the inverse of f.

Each element in A(G) has invertiable element

A(G) is a group under composition of mapping

Theorem7: If N is a normal subgroup of G and a mapping $f: G \to_N by(x) = Nx \ \forall x \in G$ then f is on – to homomorphism and kerf = N

Proof: Given that $f: G \to_N by(x) = Nx \ \forall x \in G$

(i) f is homo: Let $x, y \in G \implies xy \in G$

$$f(xy) = Nxy$$
$$= Nx.Ny$$
$$= f(x)f(y)$$

∴ fis homo

(ii)
$$f$$
 is on $-$ to: Let $Nx \in {}_{N} \Longrightarrow x \in G$

For this $x \in G$, we have f(x) = Nx

$$\forall Nx \in \mathbb{N} \text{ so } \exists x \in G \ \ni f(x) = Nx : fis \ on - to$$

To prove that kerf = N (i. e. $kerf \subseteq N$ and $N \subseteq kerf$)

Let
$$p \in Kerf \Longrightarrow f(p) = Ne = N$$

since $p \in kerf \Rightarrow p \in G \ (\because kerf \subseteq G)$

$$\Longrightarrow f(p) = Np$$

$$\Rightarrow Ne = Np$$

$$\Longrightarrow pe^{-1} \in N$$

$$\Rightarrow p \in N$$
$$\therefore kerf \subseteq N \to (1)$$

Next let $q \in N$

since
$$q \in N \Rightarrow q \in G \ (: N \triangleright G)$$

$$\Rightarrow f(q) = Nq$$

$$\Rightarrow f(q) = N \quad (: h \in H, Hh = H = hH) \Rightarrow q \in kerf$$

$$: N \subseteq kerf \rightarrow (2)$$

From (1) and (2) kerf = N

Fundamental theorem of homomorphism for groups: (first isomorphism theorem)

Statement: If f is homomorphism from a group G onto a group G^1 with Kerf then $_{Kerf}$ is isomorphic to the group G^1

(Or)

Every homomorphic image of a group G is isomorphic to some quotient group of the group G

Proof: Given that $f: G \to G^1$ is on-to homomorphism.

$$kerf = \{x \in G/(x) = e^1 \text{ where } e^1 \text{ is the identity element in } G^1\}$$

We know that ker f is a normal subgroup of G, write ker f = K

$$K = \{Kx/x \in G\} \text{ is } a \text{ } r \text{ } up \text{ } under \text{ } Kx \cdot Ky = Kxy \qquad Kx, Ky \in Ky \text{ } Kx, Ky \in Kxy \text{ } Kxy \text{ }$$

This group is called quotient group.

Define
$$\psi:_{K} \to G^{1}$$
 by $(Kx) = (x)$, $\forall Kx \in K$

i) ψ is well-define and one-one: - Let $Kx = Ky \in Ky \in Ky$

Since
$$Kx = Ky \Leftrightarrow xy^{-1} \in K = Kerf \ (\because Ha = Hb \Leftrightarrow ab^{-1} \in H)$$

 $\Leftrightarrow xy^{-1} \in Kerf$
 $\Leftrightarrow (xy^{-1}) = e^1$

$$\Leftrightarrow (x)(y^{-1}) = e^{1} \quad (\because f \text{ is homo })$$

$$\Leftrightarrow (x)[f(y)]^{-1} = e^{1}$$

$$\Leftrightarrow (x)[f(y)]^{-1}f(y) = e^{1}f(y)$$

$$\Leftrightarrow f(x) = f(y)$$

$$\Leftrightarrow \psi(Kx) = \psi(Ky)$$

 ψ is well defined and one – one

ii) ψ is homomorphism: Let Kx, \in_{κ}

Now
$$\psi(Kx \cdot Ky) = \psi(Kxy)$$

$$= f(xy) \ (\because f \text{ is homo})$$

$$= f(x) \cdot f(y)$$

$$= \psi(Kx)\psi(ky)$$

 $\therefore \psi$ is homomorphism

iii)
$$\psi$$
 is on-to: - Let $y^1 \in G^1$

Since f is on-to so $\exists y \in G \ni (y) = y^1$

For this
$$y \in G \implies ky \in \underset{K}{\longrightarrow} (ky) = (y) = y^1$$

Thus
$$\forall y^1 \in G^1 \exists ky \in \mathcal{K} \implies (ky) = (y) = y^1$$

 ψ is on-to. Hence ψ is an isomorphism from $_{K}$ to G^{1} i.e. $_{K}\cong G^{1}$

Second isomorphism theorem: -Let N be a normal subgroup of G and H be a subgroup of G then H N is a normal subgroup of H and HN is a subgroup of G and H = 0

$$HN = \{hn / h \in H, n \in N\}$$

Proof: Given that H, N are subgroups of G, clearly H N is a subgroup of H or N

Let $n \in H \cap N$ and $h \in H \Rightarrow n \in H$ and $n \in N$ and $h \in H$

$$\therefore hnh^{-1} \in N \text{ (Since } N \triangleright G \text{ and } h \in G)$$

And $hnh^{-1} \in H$ (since $n \in H, h \in H \Rightarrow nh^{-1} \in H, h \in H \Rightarrow hnh^{-1} \in H$, H is a subgroup of G)

And hence $hnh^{-1} \in H \cap K$ Therefore $H \cap N$ is a normal subgroup of H.

To prove that HN is a subgroup of G

Let $x_1, x_2 \in HN$ then $x_1 = h_1 n_1$ $x_2 = h_2 n_2$ where $h_1, h_2 \in H$ and $n_1, n_2 \in N$

Now
$$x_1 x_2^{-1} = (h_1 n_1)(h_2 n_2)^{-1}$$

$$= (h n)(n_2^{-1} h_2^{-1})$$

$$= h n_3 h_2^{-1} \quad \text{Where } n_3 = n n_2^{-1} \in N$$

$$= h e n_3^{-2} \frac{1}{2}$$

$$= h h^{-1} h n_3 h^{-1}$$

$$= h h_2 n_3 h^{-1} \quad \text{Since } h = \frac{1}{2} h_2^{-1}$$

$$= h n_4 \in HN \quad \text{Where } n_4 = h_2 n_3 h_2^{-1} \in N \text{ as } N \quad G$$

 $\therefore x x_2^{-1} \in HN \Rightarrow HN$ is a subgroup of G.

And that N is a normal subgroup of HN so that the quotient group ${}^{HN} = \{Nx \mid x \in HN\}$

Define
$$f: H \to {}^{HN}$$
 by $f(x) = Nx, \forall x \in H$

- i) f is homo: Let $x, y \in H \in \Rightarrow xy \in H$ f(xy) = Nxy = (Nx)(Ny) = f(x)f(y) $\therefore f$ is homo
- ii) f is on-to: Any element N is of the form Nax, where $a \in H$ and $x \in N$ and f(a) = Na = Nax (since N is a normal, $a^{-1}xa \in N$) f is on-to $\ker f = \{x \in H \mid f(x) = \text{the identity in } \frac{HN}{N} \}$ $= \{x \in H \mid Nx = N\}$ $= \{x \in H \mid x \in N\} = N \cap H$

Therefore, by the fundamental theorem of homomorphism, $\frac{H}{H \cap K} \cong \frac{HN}{N}$

Third isomorphism theorem: -Let N and K be normal subgroups of a group G such that

$$N \subseteq K$$
. Then $\frac{K}{N}$ is a normal subgroup of $\frac{G}{N}$ and $\frac{G}{N} \times \frac{G}{K} \cong \frac{G}{K}$

Proof: -For any Na, and Nb $\in \frac{K}{N}$ where a, b \in K.

We have
$$(Na)(Nb)^{-1} = (Na)(Nb^{-1}) = N(ab^{-1}) \in \frac{K}{N}$$

And also
$$(Nx)(Na)(Nx)^{-1} = N(xax^{-1}) \in \frac{K}{N}, \forall x \in G$$

$$\therefore \frac{K}{N} \rhd \frac{G}{N}$$

Now define
$$f: \frac{G}{N} \to \frac{G}{K}$$
 by $f(Na) = Ka, \forall a \in G$

i)
$$f$$
 is well-define: -Let $Na, Nb \in \frac{G}{N} \ni Na = Nb, \forall a, b \in G$
$$= \{Na \mid Ka = K\}$$

$$= \{Na \mid a \in K\} = \frac{K}{N}$$

Since
$$Na = Nb \Rightarrow ab^{-1} \in N \subseteq K$$

 $\Rightarrow ab^{-1} \in K$
 $\Rightarrow ka = Kb$
 $\Rightarrow f(Na) = f(Nb)$

 $\therefore f$ is well-defined

ii)
$$f$$
 is homo: -Let $Na, Nb \in \frac{G}{N} \Rightarrow Nab \in \frac{G}{N}$
 $f(Nab) = Kab = (Ka)(Kb) = f(Na)f(Nb)$
 $\therefore f$ is homo

ii)
$$f$$
 is on-to: -Let $Ka \in \frac{G}{K}$ where $a \in G$

For this
$$a \in G \Rightarrow Na \in \frac{G}{N}$$
, we have $f(Na) = Ka$

$$\forall Ka \in \frac{G}{K} so \exists Na \in \frac{G}{N} \ni f(Na) = Ka$$

$$\therefore f \text{ is on-to}$$

$$\ker f = \{Na \in \frac{G}{N} / f(Na) = \text{the identity in } \frac{G}{N} \}$$

$$= \{Na / Ka = K\}$$

$$= \{Na / a \in K\} = \frac{K}{N}$$

Therefore, by fundamental theorem of homomorphism
$$\frac{G}{N} / \underbrace{K}_{K} \cong \frac{G}{K}$$

UNIT-5: PERMUTATION GROUPS

Permutation: Let S be a finite set containing n distinct elements then there exist a bijective mapping $f: S \to S$ is called as a permutation on S. The number of elements in S called as dgree of permutation

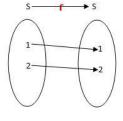
Notation: Let S be a finite set having n elements i.e. $S = \{a_1, a_2, ...\}$ then the permutation $f = \begin{pmatrix} a_1 & a_2 & ... & a_n \\ (a_1) & (a_2) & ... & f(a_n) \end{pmatrix}$

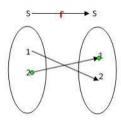
i. e. each element in second row is the f image of the elements in first row.

Ex: Let $S = \{1,2,3\}$ and $f: S \to S$ such that f(1) = 2, f(2) = 3, f(3) = 1

then $f = \begin{pmatrix} 1 & 2 & 3 \\ (1) & (2) & (3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ is permutation of degree 3.

Example: $S = \{1,2\}$ then the permutations are





 \therefore Total number of distinct permutation of S is 2

Note: Total number of distinct permutation of S in n symbols is n! the set of all these permutation of degree n form a group under permutation multiplication. This group is called as symmetric group and it is denoted by S_n .

i. e $S_n = \{f/f \text{ is a permutation of degree } n\}$

 $Ex: S = \{1, 2, 3\}$ be a finite set then find S_3

Sol: The number of distinct permutations of degree 3 is 3! = 6

 $s_3 = \{(\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, (\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, (\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, (\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, (\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, (\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}) \} \ is \ a \ group$ under permutation of multiplications.

Equality of two permutation: Let f and g be two permutation then they are called

$$equal \Leftrightarrow f(a) = g(a) \ \forall a \in S$$

i.e. image of every element of S under both f and g are equal.

Example: $f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$

Here (1) = 3 = (1)

$$(2) = 2 = (2)$$

$$(3) = 1 = (3)$$

Identity permutation: A permutation f is said to be identity permutation of S

$$if(a) = a \ \forall a \in S \ Ex: I = \begin{pmatrix} a_1 \ a_2 \ \dots & a_n \end{pmatrix} \ or \ \begin{pmatrix} 1 \ 2 \ \dots & n \\ 1 \ 2 \ \dots & n \end{pmatrix}$$

Product of permutations (or)multiplication of permutations:

Let $S = \{a_1, a_2, \dots a_n\}$ be a finite set containing n distinct elements.

Let
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$
 and $g = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix}$ be two permutations of degree n

then the product of two permutations is also a composition of permutations

$$i.e.(gof)(x) = gof(x) = g[f(x)]$$

$$gof = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix} \circ \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ c_1 & c_2 & \dots & a_n \end{pmatrix}$$

 $Ex: 1. f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ then find fg and gf

Sol:
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

$$fg = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad gf = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\therefore fg = gf$$

2. Compute
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
 o $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 2 & 5 & 1 & 7 & 4 \end{pmatrix}$

$$: \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & & 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & & 6 & 2 & 5 & 1 & 7 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 5 & 3 & 7 & 1 \end{pmatrix}$$

$$3.S = \{1, 2, 3, 4, 5, 6\}$$
 and $f = (2\ 3\ 6), g = (1\ 4\ 6)$ find fg and gf

Sol:
$$fg = (2\ 3\ 6)(1\ 4\ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 6 & 4 & 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 6 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 2 & 5 & 1 \end{pmatrix} = (1 \ 4 \ 2 \ 3 \ 6)$$

$$gf = (1\ 4\ 6)(2\ 3\ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 6 & 5 & 1 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 6 & 4 & 5 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix} = (1 \ 4 \ 6 \ 2 \ 3)$$

Cyclic permutation: Consider a set $S = \{a_1, a_2, ...\}$ and

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_k & a_{k+1} & \dots & a_n \\ a_2 & a_3 & \dots & a_1 & a_{k+1} & \dots & a_n \end{pmatrix} \text{ is a permutation of degree } n \text{ then } (a_1) = a_2,$$

$$(a_2) = a_3, ...(a_k) = a_1, f(a_{k+1}) = a_{k+1}, ... f(a_n) = a_n$$

This type of permutation f is called as cyclic permutation of length k and degree n.

It is denoted by $(a_1 a_2 ... a_k)$ or $(a_2 a_3 ... a_k a_1)$

Ex: 1. $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 3 & 5 & 6 \end{pmatrix}$ be a permutation then f is a cyclic permutation

i.e. f = (1 4 3 2) is a cyclic permutation of length 4 of degree 6

$$2.f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 3 & 6 & 5 \end{pmatrix} = (1 \ 4 \ 3 \ 2)(5 \ 6)$$
 is not a cyclic permutation.

3. Express
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 6 & 7 & 3 & 1 & 5 & 8 \end{pmatrix}$$
 in cyclic form.

Sol:
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 6 & 7 & 3 & 1 & 5 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 7 & 5 & 3 & 6 \end{pmatrix}$$

Length of cycle: The number of elements in cycle is called as length of cycle.

$$Ex: f = (1 \ 2 \ 3 \ 4 \ 5)$$
 then length of f is 5

If length of cycle is "r" then it is called r-cycle. Above example is 5-cycle

Note: 1. A cycle of length 1 is called as Identity permutation.

$$Ex: f = \begin{pmatrix} 1,2, \dots & n \\ 1,2, \dots & n \end{pmatrix} = (1)(2)(3) \dots (n)$$

2. A length of cycle is called order of cycle

$$Ex$$
: $f = (1 2 3 4) then (f) = 4$

3. *Inverse of a cycle*: Let $f = (1 \ 2 \ 3 \ 4)$ then $f^{-1} = (4 \ 3 \ 2 \ 1)$

2. Write down the inverse of $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$

$$: (i) \ f = (\begin{smallmatrix} & 1 & 2 & 3 & 4 & 5 \\ 5 & & 3 & 4 & 2 & 1 \end{smallmatrix}) \Longrightarrow f^{-1} = (\begin{smallmatrix} 5 & 3 & 4 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{smallmatrix}) = (\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{smallmatrix})$$

Disjoint cycles: Let $S = \{a_1, a_2, ..., a_n\}$ be a finite set.

Two cycles f and g are said to be disjoint cycles if they have no common elements

Ex: Let $S = \{1,2,3,4,5,6\}$ and $f = (1\ 3\ 5)$ $g = (2\ 4\ 6)$ are disjoint cycles and

 $f = (1\ 3\ 5\ 4)$ and $g = (2\ 4\ 6)$ are not disjont cycles.

Product of disjoint cycles are commutes: Let f, g are disjoint cycles

then they have no common elements.

$$(a) \neq a \text{ then } (a) = a \Longrightarrow (fg)(a) = f[g(a)] = f(a) \Longrightarrow fg = f \to (1)$$

Next (a) = a then (a)
$$\neq$$
 a \Rightarrow (gf)(a) = g[f(a)] = f(a) \Rightarrow gf = f \rightarrow (2)

$$\therefore fg = gf$$

Ex: Let $S = \{1,2,3,4,5,6\}$ and $f = (1 \ 3 \ 5)$ $g = (2 \ 4 \ 6)$ are disjoint cycles then

$$fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 4 & 1 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 6 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

$$gf = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 6 & 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 4 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

$$\therefore fg=gf$$

Note: Every permutation can be expressed as the product of disjoint cycles

Ex: Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$
 then $f = (1 6 2 5)(3 4)$

1. Write down the product of disjoint cycles

$$(i)(1\ 3\ 2)(5\ 6\ 7)(2\ 6\ 1)(4\ 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 2 & 6 & 4 & 3 & 5 \end{pmatrix} = (1)(2\ 7\ 5\ 4\ 6\ 3)$$

$$(ii) (1 3 6)(1 3 5 7)(6 7)(1 2 3 4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 4 & 6 & 7 & 3 & 1 \end{pmatrix} = (1 2 5 7)(3 4 6)$$

$$(iii)(45)(123)(321)(54)(26)(14) = (26)(14)$$

Order of a permutation: Let S_n be a permutation group on a set S. If $f \in S_n$ such that $f^n = I$ where I is the identity permutation and n is a least positive integer then the order of a permutation is n

Note: A permtation can be exprssed as K – disjoint cycles whose lengths are

 $M_1, M_2, ... M_n$ then order of the permutation is L. C. M of $\{1, M_2, ... M_n\}$

Ex: Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$
 then $f = (1 6 2 5)(3 4)$

$$0(f) = L.C.\{4,2\} = 4$$

1. Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$ in S_7

Sol: Given
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix} = (1 \ 4 \ 2 \ 3)(5 \ 6 \ 7) = L.C.\{3,4\} = 12$$

2. Find the order of $f = (1 \ 3 \ 5 \ 7)(2 \ 3 \ 4)(1 \ 2 \ 3 \ 5)$

Sol: $f = (1 \ 3 \ 5 \ 7)(2 \ 3 \ 4)(1 \ 2 \ 3 \ 5) \rightarrow These are not disjoint cycles$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 2 & 3 & 6 & 1 \end{pmatrix} = (1537)(24) = L.C.\{2,4\} = 4$$

Transposition:. A cycle of length 2 is called as transposition

Ex: f = (2 4), (i j) both are transpositions.

Note: 1. Order of every transposition is $2 \Rightarrow Every$ transposition is self inverse

2. Every permutation can be expressed as a product of transposition.

Let a cycle
$$(a_1, a_2, a_3, \dots a_{n-1}, a_n) = (a_1 a_2)(a_1 a_3)(a_1 a_4) \dots (a_1 a_{n-1})(a_1 a_n)$$

$$Ex: f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix} = (1423)(567) = (14)(12)(13)(56)(57)$$

$$O(f) = L.C.\{3,4\} = 12$$

Inversion: Let f be a permutation then the pair (i,j) $0 < i < j \le n$ is an inversion

for
$$f$$
 if $f(i) > f(j)$

$$Ex: f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 6 & 5 \end{pmatrix}$$

Here
$$1 < 2$$
 but $(1) > (2) = 3 > 1$

Here
$$1 < 3$$
 but $(1) > (3) = 3 > 2$

Here 1 < 4 but (1) < (4) = 3 < 4 this not a inversion pair

Here
$$5 < 6$$
 but $(5) > (6) = 6 > 5$

Then the pair (12), (13) are called inversion

Signature: The total number of such inversion for the permutation f is called signature and it is denoted by Sig f.

Let
$$f = f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$

Here the iversion pairs are $(1\ 3), (2\ 3), (2\ 4), (5\ 6)$ so $Sig\ f = 4$

Inverse permutation: If $f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$ is a permutation then inverse

permutation of f is $f^{-1} = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ here f^{-1} is also bijective.

$$\therefore ff^{-1} = f^{-1}f = I$$

Ex: If $f = (2 \ 3 \ 4 \ 1)$ of degree 5 then find f^{-1}

Sol:
$$f = (2 \ 3 \ 4 \ 1) \Rightarrow f^{-1} = (1 \ 4 \ 3 \ 2)$$

${\bf 2.} \textit{Write down the inverse of the following permutations}$

$$(i)\,f = (\begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{matrix})\,\,(ii) = (\begin{matrix} 4 & 2 & 3 & 1 \\ 2 & 4 & 1 & 3 \end{matrix})$$

$$: (i) \ f = (\begin{matrix} & 1 & 2 & 3 & 4 & 5 \\ 5 & & 3 & 4 & 2 & 1 \end{matrix}) \Longrightarrow f^{-1} = (\begin{matrix} 5 & 3 & 4 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{matrix}) = (\begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{matrix})$$

$$(ii) \ g = \begin{pmatrix} 4 & 2 & 3 & 1 \\ 2 & 4 & 1 & 3 \end{pmatrix} \Rightarrow g^{-1} = \begin{pmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

3. Express the product $(2\ 5\ 4)(1\ 4\ 3)(2\ 1)$ as a product of disjoint cycles and find its inverse.

Sol: Given
$$(2\ 5\ 4)(1\ 4\ 3)(2\ 1) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix} = (1\ 5\ 4\ 3)(2)$$

$$\Rightarrow f^{-1} = (3 4 5 1) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{pmatrix}$$

4. Express the $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 6 & 5 \end{pmatrix}$ as a product of transpositions.

$$(i)f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 6 & 5 \end{pmatrix} = (1\ 3\ 2)(5\ 6) = (1\ 3)(1\ 2)(5\ 6)$$

$$(ii)f = (1 2 3 4 5 6) = (1 6)(1 5)(1 4)(1 3)(1 2)$$

Even and odd permutation: A permutation f is called even (odd) permutation if the total number of transposition are even(odd).

Ex: Let
$$f = (1\ 2\ 3\ 4\ 5\ 6\ 7) = (1\ 2)(1\ 3)(1\ 4)(1\ 5)(1\ 6)(1\ 7) = 6$$
 (transposition)

 $Even\ transposition = Even\ permutation$

Note: 1. A cycle of length n is called even pemutation(odd) if n is odd(even)

- :() 3 cycle is even permutation i. e. $f = (1 \ 2 \ 3) = (1 \ 2)(1 \ 3)$
- $= Even\ number\ of\ transposition$
- (ii) 4 cycle is odd permutation. i. e. $f = (1 \ 2 \ 3 \ 4) = (1 \ 2)(1 \ 3)(1 \ 4)$
- $= odd\ number\ of\ transposition$
- 2. Every transposition is an odd permutation. : $(2\ 4)$, $(5\ 6)$ are odd permutation.
- 3. The identity permutation is always even permutation because I can be expressed as a product of 2 transposition: $(1\ 2)(2\ 1) = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$,

$$(1\ 2)(2\ 1)(3\ 1)(1\ 3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

- 4. The product of two odd permutation is even. Ex: (12)(34)
- $5. The\ product\ of\ two\ even\ permutation\ is\ even.$

$$Ex: f = (123), = (345) then fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = (12345)$$

6. The product of even and odd permutation is odd.

$$Ex$$
: $f = (1 2 3) → even and $g = (1 2 3 4) → odd$$

then
$$fg = (1\ 2\ 3)(1\ 2\ 3\ 4) = (1\ 3\ 4\ 2) \rightarrow odd$$

- 7. The inverse of odd permutation is odd
- 8. The inverse of even permutation is even
- 1. Examine weather the following permutation are even or odd?

$$(i) f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 6 & 7 & 1 \end{pmatrix} = (1\ 3\ 4\ 5\ 6\ 7) = (1\ 7)(1\ 6)(1\ 5)(1\ 4)(1\ 3)$$

- = 5 transposition
- \therefore f is odd permutation.

$$(ii) f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 1 & 8 & 5 & 6 & 2 & 4 \end{pmatrix} = (1723)(48) = (17)(12)(13)(48)$$

= 4 tranposition : f is even permutation.

(iii)
$$f = (1\ 2\ 3\ 4\ 5)(1\ 2\ 3)(4\ 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix} = (1\ 3\ 2\ 4) = (1\ 4)(1\ 2)(1\ 3)$$

= 3 transposition : f is odd permutation

Theorem1: Let S_n be the permutation set of degree n of order n! form a finite group under product of permutation. If $n \le 2$ then S_n is abelian group and if $n \ge 3$ then S_n is non – abelian group.

Proof: Let $S = \{a_1, a_2, ...\}$ be a finite set containing n distinct elements

 $: S_n = \{f/f \text{ is a permutation of degree } n\}$

To prove that S_n is a group under product of permutation.

(i) Closure property: Let
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$
 and $g = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix}$ be two

permutations of degree n then $gof = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix} \in S_n$

(ii) Associative property: Let
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$
 and $g = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ & c_2 & \dots & c^n \end{pmatrix}$,

$$h = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}$$
 be three permutations of degree n

Now
$$h(gof) = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}$$
 and $(hog)of = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}$

$$ho(gof) = (hog)of$$

(iii) Identity permutation: Let $I = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ be a permutation of degree n

Let
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$
 be a permutation of S_n

$$foI = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} = f$$

also
$$Iof = f : I = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$
 is the identity permutation of degree n .

(iv) Inverse property: Let $f \in S_n \Rightarrow f$ is bijective $\Rightarrow f^{-1}$ is bijective so $f^{-1} \in S_n$

$$fof^{-1} = I \text{ or } f^{-1}of = I$$

$$f^{-1}$$
 is the inverse of f

Every permutation in S_n has invertiable permutation : S_n is a group of order n!

If
$$n = 1$$
 then $(S_n) = 1! = 1$

i.e. Every group of order 1 is always abelian.

If
$$n = 2$$
 then $(S_n) = 2! = 2$

∴ Every group of order 2 is always abelian

If
$$n \ge 3$$
 then $f = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 2 & 3 & 4 & \dots & n-1 & n \end{pmatrix}$ $g = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 2 & 1 & 3 & \dots & n-1 & n \end{pmatrix}$

$$fg = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 3 & 2 & 4 & \dots & 1 \end{pmatrix}$$
 and $gf = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 3 & 4 & \dots & 2 \end{pmatrix}$

$$\therefore fg \neq gf \implies S_n \text{ is non } - \text{abelian group if } n \geq 3$$

Theorem2: Let S_n be a permutation group of degree n then of n! elements in $\frac{n!}{2}$

elements are even permutation and $\frac{n!}{2}$ elements are odd perutation of degree n.

Proof: Given that S_n is a permutation group of degree n of order n!

 $i.e.S_n = \{e_1, e_2, \dots e_p, e_1, e_2, \dots e_q\}$ is a permutation group of degree n

 $(S_n) = n!$ here $e_1, e_2, \dots e_p$ are even permutation of degree n.

and $o_1, o_1, \dots o_q$ are odd permutation of degree n.

$$p + q = n!$$

Since every permutation in S_n is either even or odd but not both.

Let $t \in S_n$ whre t is a transposition.

Since S_n is a permutation group.

By closure property: te_1 , te_2 , ... te_p , to_1 , to_2 , ... $to_q \in S_n$

Since t is odd permutation and $e_1, 2, \dots e_p$ are even permutation

 \therefore te₁, te₂, ... te_p are p odd permutations.

If possible suppose that $te_i = te_i \implies e_i = e_i$

which is a contraduct to p even permutation $: te_i \neq te_j$

 $\therefore te_1, te_2, \dots te_p \ are \ p \ odd \ permutations$

 $p \leq q \rightarrow (1)$ (: S_n contains exactly q odd permutations)

similarly we can prove that $to_1, to_2, ...$ are q distinct even permutations

 $: q \le p \to (2)$ (: S_n contains exactly p even permutations)

From (1) (2) p = q

Since
$$p + q = n! \Rightarrow p + p = n! \Rightarrow 2p = n! \Rightarrow p = \frac{n!}{2}$$

$$\Rightarrow p = q = \frac{n!}{2}$$

$$\therefore q = \frac{n!}{2}$$

 \therefore Every permutation group S_n contains $\frac{n!}{2}$ even permutations and $\frac{n!}{2}$ odd permutations

Alternating set: Let S_n be a permutation group of order n!. The set of all even permutation is called as alternating set and it is denoted by A_n

Theorem3: The alternating set A_n form a group of order $\frac{n!}{2}$ under product of permutation.

Proof: $A_n = \{f/f \text{ is an even permutation of degree } n\}$

To prove that A_n is a group under product of permutation.

(i) Closure property: Let $f, g \in A_n \Rightarrow f$ and g are even permutation

. The product of two even permutation is also even permutation. $\therefore fg \in A_n$

(ii) Associative property: Since permutation is a mapping and hence product of

 $permutation \ is \ always \ associative. \ i. \ e. \ (fog)oh = fo(goh) \ \ \forall f,g,h \in A_n$

(iii) Identity property: Let $I \in A_n \Rightarrow I$ is an even permutation.

we know that every identity permutation is always even permutation.

Let $f \in A_n \Longrightarrow f$ is even permutation : foI = f = Iof

(iv)Inverse property: Let $f \in A_n \Rightarrow f$ is even permutation

We know that the inverse of even permutation is also even permutation. $: f^{-1} \in A_n$

$$\div fof^{-1} = I = f^{-1}of \quad \forall f \in A_n$$

 \therefore The alternating set A_n form a group of order $\frac{n!}{2}$ under product of permutation

Theorem 4: The alternating group A_n is a normal subgroup of S_n

proof: $S_n = \{f/f \text{ is a permutation of degree } n\}$ is group of order n!

 $A_n = \{f/f \text{ is an even permutation of degree } n\} \text{ is a group of order } \frac{n!}{2}$

To prove that A_n is a normal subgroup of S_n

 $(i)A_n \neq \phi, A_n \subseteq S_n$ (ii) Let $f, g \in A_n \Longrightarrow f$ and g are even permutation

$$\Rightarrow f$$
, $^{-1} \in A_n \Rightarrow fg^{-1} \in A_n : A_n \text{ is a sbgroup of } S_n$

(iii)Let $f \in S_n$ and $g \in A_n$ since $f \in S_n \Rightarrow f$ is either even or odd

Case(i)If f is even

Since f is even \Rightarrow f^{-1} is also even. f is even, is even \Rightarrow fg is also even

fg is even, fgf^{-1} is also even $fgf^{-1} \in A_n$

Case(ii) If f is odd

Since f is odd \Rightarrow f⁻¹is also odd. f is odd, g is even \Rightarrow fg is odd

 $fg \text{ is odd}, 1 \text{ is odd} \Rightarrow fgf^{-1} \text{ is also even} : fgf^{-1} \in A_n$

$$\forall f \in S_n, \forall g \in A_n \Longrightarrow fgf^{-1} \in A_n$$

 \therefore A_n is a normal subgroup of S_n

Theorem5: For any n > 1 the set of all even permutation in S_n is a normal

subgroup of S_n and order of A_n is $\frac{n!}{2}$ and the index of A_n in S_n is 2

Proof: Let n > 1 and $A_n = \{ f \in S_n / f \text{ is an even permutation of degree } n \}$

we know that $G = \{1, -1\}$ is a group under multiplication and 1 is the identity of G.

Define
$$\phi: S_n \to G$$
 by $(f) = \{-1, 1, if f \text{ is even } if f \text{ is odd } \}$

we prove that $\phi: S_n \to G$ is on – to homomorphism with A_n as kernel

Case(i) Let f, g are even $\Rightarrow fg$ is also even

$$\therefore$$
 $(f) = 1, (g) = 1, (fg) = 1$

$$(f)(g) = 1.1 = 1 = (fg)$$

Case(ii) Let f, g are odd $\Rightarrow fg$ is also even

$$\therefore$$
 $(f) = -1, (g) = -1, \phi(fg) = 1$

$$(f)(g) = (-1)(-1) = 1 = \phi(fg)$$

Case(iii) Let f is even, g are odd $\Rightarrow fg$ is odd

$$\therefore$$
 $(f) = 1, (g) = -1, (fg) = -1$

$$(f)(g) = 1(-1) = -1 = (fg)$$

Case(iv) Let fis odd, g is even \Rightarrow fg is odd

$$\therefore$$
 $(f) = -1, (g) = 1, \phi(fg) = -1$

$$(f)(g) = (-1).1 = -1 = (fg)$$

In all above cases $\phi(fg) = \phi(f)\phi(g) \implies \phi$ is homomorphism

Since n > 1, he transposition (1 2) in S_n is odd permutation and hence

 $(1\ 2) = -1$ This shows that ϕ is on - to

 $ker\phi = \{f \in S_n/\phi(f) = identity \ element \ in \ G\}$

$$= \{ f \in S_n/(f) = 1 \}$$

$$= \{ f \in S_n / f \text{ is even} \}$$

= The set of all even permutations

 $=A_n$

By fundamental theorem of isomorphism, $\frac{S_n}{\ker \phi} \cong G \Longrightarrow \frac{S_n}{n} \cong G \Longrightarrow o(\frac{S_n}{A_n}) = o(G)$

$$\Rightarrow o\left(\frac{1}{A} = 2\right) \Rightarrow \frac{(S_n)}{(1)^n} = 2 \Rightarrow o(A_n) = \frac{o(S_n)}{2} \Rightarrow o(A_n) = \frac{n!}{n}$$

Cayley's theorem 6: Every finite group is isomorphic to some permutation group (OR)

Prove that a permutation group is isomorphic to a group on suitable finite set

Proof: Let G be a finite group and $a \in G$.

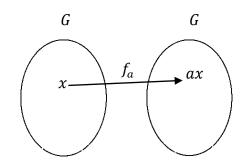
Define
$$f_a: G \to G$$
 by $f_a(x) = ax \ \forall x \in G$

(i) f_a is well – define and one – one:

Let
$$x, y \in G \Longrightarrow x = y$$

since
$$x = y \Leftrightarrow ax = ay \ \forall a \in G$$

$$\Leftrightarrow f_a(x) = f_a(y)$$



 \therefore f_a is well defined and one — one

$$(ii) f_a is on - to$$
:

Let $y \in G$ (co – domain)

since $a \in G, y \in G \implies a^{-1}y \in G$

$$f_a(a^{-1}y) = (a^{-1}y) = y$$

$$\forall y \in G \text{ so } \exists \ a^{-1}y \in G \ \ni f_a(a^{-1}y) = y$$

 $\therefore f_a$ is on – to and hence f_a is a permutation.

$$Write \ G^1 = \{f_a \in G/\alpha \in G\}$$

= The set of all permutations of G corresponding to every element of G

To prove that G^1 is a group under product of permutation.

(i) Closure property: L, $f_a \in {}_bG^1$

since $a, b \in G$ and $x \in G$

$$f_a f_b(x) = f_a[f_b(x)]$$

$$= f_a(bx)$$

$$= a(bx)$$

$$= (ab)x$$

$$= f_a(x) \in G^1$$

$$\therefore f_a f_b(x) = f_a(x) \in G^1 \Longrightarrow f \ f_a \ \underset{b}{=} \ f \ b_a \in G^1 \longrightarrow (1)$$

(ii) Associative property: L, f_a , $f_b \in G^1$

Now
$$(f_a f_b) f_c = (f_{ab}) f_c$$

$$= f_{(ab)c}$$

$$= f_{a(bc)}$$

$$= f_a(f_{bc})$$

$$= f_a(f_b f_c)$$

(iii) Identity property: since $e \in G \Rightarrow f_e \in G^1$

$$Let f_a \in G^1 \qquad Now \ f_a f_e = f_{ae} = f_a$$

similarly
$$f_e f_a = f_{ea} = f_a$$

(iv) Inverse property: Let
$$f_a \in G^1 \Rightarrow a \in G \Rightarrow a^{-1} \in G \Rightarrow f_{a^{-1}} \in G^1$$

Now
$$f_a f_{a^{-1}} = f_{aa^{-1}} = f_e$$
 similarly $f_{a^{-1}} f_a = f_{a^{-1}a} = f_e$

 G^1 is a permutation group.

Define
$$\phi: G \to G^1$$
 by $(a) = f_a \quad \forall a \in G$

$(i)\phi$ is well define and one – one:

Let $a, b \in G$ such that a = b

since
$$a = b \iff ax = bx \ \forall x \in G$$

$$\Leftrightarrow f_a(x) = f_b(x)$$

$$\Leftrightarrow f_a = f_b$$

$$\Leftrightarrow \phi(a) = \phi(b)$$

(ii) ϕ is homo: Let $a, b \in G \implies ab \in G$

Now
$$\phi(ab) = f_{ab}$$

= $f_a f_b$
= $\phi(a)\phi(b)$

 $\therefore \phi$ is homo

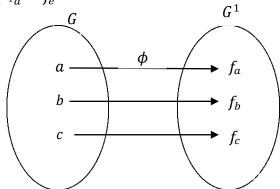
$(ii)\phi$ is on – to:

Let
$$f_b \in G^1 \Longrightarrow b \in G$$

For this $b \in G$, we have $\phi(b) = f_b$

Thus
$$\forall f_b \in G^1$$
 so $\exists b \in G$ such that $(b) = f_b$

∴ Every finite group is isomorphic to some permutation group



Problems:

1. Find the permutation group is isomorphic to the multiplicative group

$$G = \{1, \omega, \omega^2\}$$

Sol: Given that $G = \{1, \omega, \omega^2\}$

By using Cayley's theorem, consider $f_a: G \to G$ by $f_a(x) = ax \quad \forall a \in G$ and x is any element of G

 $\therefore f_a$ is a permutation

The permutation group is $G^1 = \{ f_1, f_{\omega\omega^2} \}$

where
$$f_1 = \begin{pmatrix} 1 & \omega & \omega^2 \\ 1.1 & 1.\omega & 1.\omega^2 \end{pmatrix} = \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & \omega & \omega^2 \end{pmatrix}$$
 $f_{\omega} = \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega.1 & \omega.\omega & \omega.\omega^2 \end{pmatrix} = \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega.\omega & \omega^2 & 1 \end{pmatrix}$

$$\int_{f}^{\omega^{2}} = \begin{pmatrix} 1 & \omega & \omega^{2} \\ \omega^{2} 1 & \omega^{2} \cdot \omega & \omega^{2} \cdot \omega^{2} \end{pmatrix} = \begin{pmatrix} 1 & \omega & \omega^{2} \\ \omega^{2} & 1 & \omega \end{pmatrix}$$

2. Find the permutation group is isomorphic to the multiplicative group

$$G = \{1, -1, i, -i\}$$

Sol: Given that $G = \{1, -1, -i\}$

By using Cayleys theorem, consider $f^a: G \to G$ by $f^a(x) = ax \quad \forall a \in G$ and x is any element of G

 \therefore f^a is a permutation

The permutation group is $G^1 = \{ f_i, f_i \}$

where
$$f^1 = \begin{pmatrix} 1 & -1 & i & -i \\ 1.1 & 1(-1) & 1.i & 1.(-i) \end{pmatrix} = \begin{pmatrix} 1 & -1 & i & -i \\ 1 & -1 & i & -i \end{pmatrix}$$

$$f_{-1} = \begin{pmatrix} 1 & -1 & i & -i \\ -1.1 & -1(-1) & -1.i & -1.(-i) \end{pmatrix} = \begin{pmatrix} 1 & -1 & i & -i \\ -1 & 1 & -i & i \end{pmatrix}$$

$$f_i = \begin{pmatrix} 1 & -1 & i & -i \\ i & 1 & (-1) & i & i & i & (-i) \end{pmatrix} = \begin{pmatrix} 1 & -1 & i & -i \\ i & -i & -1 & 1 \end{pmatrix}$$

$$f_{-i} = \begin{pmatrix} 1 & -1 & i & -i \\ -i & 1 & -(-1) & -i & i & -i \\ -i & i & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & i & -i \\ -i & i & 1 & -1 \end{pmatrix}$$

3. Find A_3 is a normal subgroup of S_3

Sol: Given $S = \{1,2,3\}$

$$S_3 = \{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \}$$

 A_3 = The set of even permtation

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = Identity permutation so this is even$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2\ 3) \rightarrow This\ transposition\ so\ it\ is\ odd$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13) \rightarrow odd$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1\ 2)) \rightarrow odd$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1\ 2\ 3) = (1\ 2)(1\ 3) = 2$$
 transposition so this is even

$$f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1\ 3\ 2) = (1\ 3)(1\ 2) = 2$$
 transposition so this is even

 $A_3 = \{ f_i \in S_i \text{ is a normal subgroup of } S_i \}$

CYCLIC GROUPS

Cyclic group: Let (G,\cdot) be a group and $a \in G$ then $G = \{a^n/n \in \mathbb{Z}\}$ is called as cyclic group generated by 'a' and is denoted by G = a > 0 or a > 0

Note: When we have taken addition $G = \{na/n \in \mathbb{Z}\}$ is a cyclic group generated by 'a'

Ex: 1. *P.T G* = $\{1, -1\}$ *is a cyclic group under multiplication.*

Sol: Given that $G = \{1, -1\}$

Let a = 1 Now $1^1 = 1$, $(1) \neq -1$ for any $n \in \mathbb{Z} \implies a = 1$ is not a generator of G

Let
$$a = -1$$
 $(-1)^1 = -1$, $(-1)^2 = 1 \implies a = -1$ is a generator of G

 $: G = < -1 > \implies G$ is a cyclic group

2. *P.T G* = $\{1, \omega, \omega^2\}$ is a cyclic group under multiplication.

Sol: Given that $G = \{1, \omega, 2\}$

Let a = 1 Now $1^1 = 1$, $(1) \neq \omega$, ω^2 for any $n \in \mathbb{Z} \Rightarrow a = 1$ is not a generator of G

Let
$$a = \omega$$
 $(\omega)^1 = \omega$, $(\omega)^2 = \omega^2$, $(\omega)^3 = 1 \implies a = \omega$ is a generator of G

Let
$$a = \omega^2$$
 $(\omega^2)^1 = \omega^2$, $(\omega^2)^2 = \omega$, $(\omega^2)^3 = 1 \implies a = \omega^2$ is a generator of G

$$: G = < \omega >$$
 and $< \omega^2 > \implies G$ is a cyclic group

3. $P.TG = \{1, -1, -i\}$ is a cyclic group under multiplication.

Sol: Given that $G = \{1, -1, -i\}$

Let a = 1 Now $1^1 = 1$, $(1) \neq -1$, -i for any $n \in \mathbb{Z} \implies a = 1$ is not a generator of G

Let
$$a = -1$$
 $(-1)^1 = -1, (-1)^2 = 1, (-1)^n \neq i, -i$

 $\Rightarrow a = -1$ is not a generator of G

Let a = i $(i)^1 = i$, $(i)^2 = -1$, $(i)^3 = -i$, $(i)^4 = 1 \implies a = i$ is a generator of G

Let
$$a = -i$$
 $(-i)^1 = -i, (-i)^2 = -1, (-i)^3 = i, (-i)^4 = 1$

 \Rightarrow a = -i is a generator of G

$$\therefore G = and <-i> \Longrightarrow G \text{ is a cyclic group}$$

4. P.T the n^{th} roots of unity is a cyclic group under multiplication.

Sol: Let
$$G = \{e^{\frac{2k\pi i}{n}}/k = 0,1,2,...(n-1)\}$$
 where $\omega = e^{\frac{2\pi i}{n}}$ so $G = \{1,\omega,\omega^2,...\omega^{n-1}\}$

Let
$$a = \omega$$
 Now ()¹ = ω , (ω)² = ω ², (ω)³ = ω ³ ... (ω)ⁿ⁻¹ = ω ⁿ⁻¹

 \Rightarrow a = ω is a generator of G.i.e.G = $<\omega>$

: *G* is a cyclic group.

Hence the n^{th} roots of unity is a cyclic group under multiplication

5. S. T
$$Z_6 = \{0,1,2,3,4,5\}$$
 is a cyclic group of order 6 under $+_6$

Sol:
$$Z_6 = \{0,1,2,3,4,5\}$$

$$Leta = 1$$
 $G = \{0(1), 1(1), 2(1), 3(1), 4(1), 5(1)\} = \{0,1,2,3,4,5\}$

$$: G = <1> \implies G \text{ is a cyclic group}$$

$$Leta = 5$$
 $G = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0,5,4,3,2,1\}$

$$: G = <5> \implies G \text{ is a cyclic group}$$

6. P. T $(\mathbb{Z}, +)$ have only two generators (OR) P. T $(\mathbb{Z}, +)$ is a cyclic group

Sol: Let
$$\mathbb{Z} = \{... - 3, -2, -1, 0, 1, 2, 3,\}$$
 clearly $(\mathbb{Z}, +)$ is a group

Let
$$a = 1$$
 then $\{... - 3(1), -2(1), -1(1), 0(1), 1(1), 2(1), 3(1)\}$

$$= \{...-3, -2, -1, 0, 1, 2, 3\} = \mathbb{Z} : \mathbb{Z} = <1 > \implies \mathbb{Z} \text{ is a cyclic group}$$

Also -1 is the additive inverse of $1 : \mathbb{Z} = <-1> \Rightarrow \mathbb{Z}$ is a cyclic group

 \therefore 1, -1 are the generators of $(\mathbb{Z}, +)$

<i>S. No</i>	Infinite cyclic groups	Generators
1	$(\mathbb{Z},+)$	1, -1
2	$(2\mathbb{Z},+)$	2, -2
3	$(n\mathbb{Z},+)$	n, $-n$
4	$G = \{a^n/n \in \mathbb{Z}\}$	a, \overline{a}
5	$G = \{2^n/n \in \mathbb{Z}\}$	2, ${2}$

Theorem1: If a 'is a generator of a cyclic group then a^{-1} is also generator of cyclic group

 (\mathbf{OR})

If $G = \langle a \rangle$ then P.T $G = \langle a^{-1} \rangle$

Proof: Let $G = \langle a \rangle$ be a cyclic group generated by 'a'

 $i.e.G = \{a^n/n \in \mathbb{Z}\}\ Let\ a^r \in G\ where\ r \in \mathbb{Z}$

Now $a^r = (a^{-1})^{-r}$ where $-r \in \mathbb{Z}$

 $\implies G = \langle a^{-1} \rangle$

 $\therefore a^{-1}$ is a generator of G

Theorem2: Any infinite cyclic group G has exactly two generators

Proof: Let G be an if inite cyclic group generated by a. Thus (a) = 0 or ∞

$$G = \langle a \rangle = \{a^n/n \in \mathbb{Z}\}$$

Let a^m be a genrator of G since $a \in G$ so $\exists p \in \mathbb{Z}$ such that $(a^m)^p = a$

$$\Rightarrow a^{mp-1} = e \Rightarrow (a) = mp - 1$$

[p-1 > 0 then $\exists q = mp-1 \ni a^q = e \Longrightarrow G$ is finite]

- $\therefore \textit{G is infinite so } mp-1=0 \Longrightarrow mp=1 \Longrightarrow m=\pm 1 \textit{ or } p=\pm 1$
- ∴ G has exactly two generators

Theorem3: Every cyclic group is always an abelian. Is the converse true? justify your answer

Proof: Let $G = \langle a \rangle$ be a cyclic group generated by a

i. e. $G = \{a^n/n \in \mathbb{Z}\}\ Let\ x, y \in G\ then\ x = a^r, y = a^s\ where\ r, s \in \mathbb{Z}$

Now $xy = a^r a^s = a^{r+s} = a^{s+r} = a^s a^r = yx$

 $xy = yx \quad \forall x, y \in G :: G \text{ is an abelian group}$

The converse of the theorem need not be true

b

b

а

 \mathcal{C}

 \mathcal{C}

b

e

а

а

b

е

е

b

С

е

а

b

 \mathcal{C}

i.e. Every abelian group need not be a cyclic group.

Ex: $G = \{e, a, b, c\}$ is an abelian group undermultiplication

$$Now(i)(e)^1 = e, (e)^2 = e \dots (e)^n = e$$

 \Rightarrow e is not a generator of G

$$(ii)(a)^1 = a, (a)^2 = e, (a)^3 = a, (a)^4 = e, (a)^5 = a \dots$$

 \Rightarrow a is not a generator of G

$$(iii)(b)^1 = b, (b)^2 = e, (b)^3 = b, (b)^4 = e, (b)^5 = b \dots$$

 \Rightarrow b is not a generator of G

$$(iv)(c)^1 = c, (c)^2 = e, (c)^3 = c, (c)^4 = e, (c)^5 = c \dots$$

 \Rightarrow c is not a generator of G

∴ G is not a cyclic group

Hence every abelian group need not be a cyclic group

Consider
$$G = \{A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, = \begin{bmatrix} 1 & -0 \\ -0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 1 & -0 \end{bmatrix}\}$$

Clearly is G an Abelian group w.r.t matrix multiplication.

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, ^{2} = \begin{bmatrix} -0 & 1 & 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = C$$

$$0 & 1 & -1 & 0$$

$$B^{3} = BB^{2} = \begin{bmatrix} -1 & 0 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = D$$

$$-1 & 0 & 1 & 0$$

$$B^4 = B^2 \cdot B^2 = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = A$$

$$G = \langle B \rangle \implies G$$
 is a cyclic group

•	Α	В	С	D
A	A	В	С	D
В	В	С	D	A
С	С	D	Α	В
D	D	A	В	С

Theorem4: Let G be a finite cyclic group of order n. Then for any $1 \le m \le n$,

 a^m is a generator of $G \iff m$ is relatively prime to n. (i.e (m, n) = 1)

Proof: Given that $G = \langle a \rangle$ and o(a) = |G| = n.

For any $b \in G$, we have $\langle b \rangle \subseteq G = \langle a \rangle$ and hence

$$G = \langle b \rangle \Leftrightarrow \langle a \rangle \subseteq \langle b \rangle \Leftrightarrow a \in \langle b \rangle$$

 \therefore b is a generator of $G \Leftrightarrow a = b^S$ for some integer s.

Now, us fix $1 \le m \le n$. *Then*

 a^m is a generator of $G \iff a = (a^m)^S$ for some $s \in \mathbb{Z}$

$$\Leftrightarrow a^{ms-1} = e \text{ for some } s \in \mathbb{Z}$$

$$\Leftrightarrow$$
 (a)|ms - 1

$$\Leftrightarrow n|ms-1$$

$$\Leftrightarrow ms - 1 = nt \ for \ some \ t \in \mathbb{Z}$$

$$\Leftrightarrow ms - nt = 1 \ for \ some \ t \in \mathbb{Z}$$

 \Leftrightarrow m is relatively prime to n. (i. e (m,n) = 1)

Theorem5: A cyclic group of order 'n' has exactly $\phi(n)$ generators

Proof: we know that $G = \langle a^m \rangle \Leftrightarrow (m_i) = 1$

 \Rightarrow a^m is the generator of $G \Leftrightarrow m$ is a positive integer less than n and which is relatively prime to n

The number of generators in $G \Leftrightarrow The$ number of positive integers less than n and which are relatively prime to $n \Leftrightarrow \phi(n)$

 \therefore A cyclic group of order 'n'has exactly $\phi(n)$ generators

Euler \phi function: Euler ϕ function is a function $\phi: \mathbb{N} \to \mathbb{N}$ defined as follows

$$(i)\ (1) = 1\ (ii)r\ n(>1) \in N$$

 $\phi(n)=$ The number of positive integers less than n and which are relatively prime to n

Note: 1. If G is a cyclic group then $n = p_1^{-1}p_2^{-2} \dots p_k^{-k}$ where $p_1, 2, \dots p_k$ are primes and $1 < p_1 < p_2 < \dots < p_k$, $\alpha_1, 2, \dots \alpha_k$ are positive integers then

$$(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right)$$

2. Further $n = p^{\alpha}$ where p is a prime and less than n then

$$(n) = n (1 - \frac{1}{p}) = p^{\alpha} (\frac{p-1}{p}) = p^{\alpha-1} (p-1)$$

3. If p is a prime then
$$(n) = n (1 - \frac{1}{p}) = p (\frac{p-1}{p}) = p-1$$

1. Find the number of generators of a cyclic group of order 10

Sol:
$$n = 10$$
 then $(10) = ?$ $n = 10 = 2 \times 5 = 2^1 \times 5^1$

$$(n) = n (1 - \frac{1}{p_2}) \Rightarrow \phi(10) = 10 (1 - \frac{1}{2}) (1 - \frac{1}{5}) = 10 \binom{1}{2} \binom{1}{5} = 4$$

$$\therefore (10) = 4 \qquad Generators \ are \ a^1, a^3, ^7, a^9$$

2. Find the number of generators of a cyclic group of order 5,6,8,12,15,36,60,72,100,256?

Sol:
$$n = 5 \rightarrow prime then (5) = 5 - 1 = 4$$

$$(ii)n = 6 = 2 \times 3 = 2^1 \times 3^1 \Longrightarrow (6) = 6(1 - 2)(1 - 2) = 6(2)(3) = 2$$

$$(iii)n = 8 = 2^3 \Longrightarrow (8) = 8(1 - {}_{2}) = 8({}_{2}) = 4$$

$$(iv)n = 100 = 10 \times 10 = 2^2 \times 5^2 \Longrightarrow (100) = 100 (1 - {}_2) (1 - {}_5) = 100 ({}_2) ({}_5) = 40$$

$$(iii)n = 256 = 2^8 \Longrightarrow (256) = 256 (1 - ---) = 256 (_2) = 128$$

Theorem6: Every subgroup of a cyclic group is cyclic

Proof: Let $G = \langle a \rangle$ be a cyclic group generated by 'a' i. e. $G = \{a^n/n \in \mathbb{Z}\}$

Let H be a subgroup of G

To prove that H is a cyclic group

Since $H \subseteq G \Rightarrow Every$ element of H is an element of G

Thus it follows that $a^n \in H$ for some $n \in \mathbb{Z}$

Let 'd' be a least positive integer such that $a^d \in H$

To prove that H is a generated by a^d (i.e. $H = \langle a^d \rangle$)

Let a^m be the generator of H for some $m \in \mathbb{Z}$

By division algorithm so $\exists q, r \in \mathbb{Z}$ such that m = dq + r where $0 \le r < d$

Now
$$a^m = a^{dq+r} = (a^d)^q a^r$$

since
$$a^m \in H$$
, $a^d \in H \Rightarrow a^{dq} \in H \Rightarrow a^{-dq} \in H$

By closure property $a^m \in H$, $a^{-dq} \in H \Rightarrow a^m a^{-dq} \in H \Rightarrow a^{dq} a^r a^{-dq} \in H$

$$\Rightarrow a^r \in H \text{ where } 0 \leq r < d$$

If 0 < r < d then $a^r \in H$ which is a contraduct to a^d is least

$$\therefore r = 0$$

$$a^m = a^{dq+0} = (a^d)$$

which impies that every element in H is of the form $(a^d)^q$

 $\therefore H = \langle a^d \rangle$ Hence H is a cyclic group.

Theorem7: Every subgroup of a cyclic group is a normal subgroup

proof: 1. Every subgroup of a cyclic group is cyclic

- 2. Every cyclic group is always abelian
- 3. Every subgroup of an abelian group is a normal subgroup

Proof1: Let $G = \langle a \rangle$ be acyclic group generated by $'a'i.e.G = \{a^n/n \in \mathbb{Z}\}$

Let H be a subgroup of G

To prove that H is a cyclic group

Since $H \subseteq G \Rightarrow$ Every element of H is an element of G

Thus it follows that $a^n \in H$ for some $n \in \mathbb{Z}$

Let 'd' be a least positive integer such that $a^d \in H$

To prove that H is a generated by a^d (i.e. $H = \langle a^d \rangle$)

Let a^m be the generator of H for some $m \in \mathbb{Z}$

By division algorithm so $\exists~q,r \in \in \mathbb{Z}$ such that m = dq + r where $0 \le r < d$

Now
$$a^m = a^{dq+r} = (a^d)^q a^r$$

$$since \ a^m \in H, a^d \in H \Longrightarrow a^{dq} \in H \Longrightarrow a^{-dq} \in H$$

By closure property $a^m \in H$, $a^{-dq} \in H \Rightarrow a^m a^{-dq} \in H \Rightarrow a^{dq} a^r a^{-dq} \in H$

 $\Rightarrow a^r \in H \text{ where } 0 \leq r < d$

If 0 < r < d then $a^r \in H$ which is a contraduct to a^d is least

 $\therefore r = 0$

$$a^m = a^{dq+0} = (a^d)$$

which implies that every element in H is of the form $(a^d)^q$

 $: H = < a^d > Hence H$ is a cyclic group.

Proof2: Let $G = \langle a \rangle$ be a cyclic group generated by a

i.e. $G = \{a^n/n \in \mathbb{Z}\}\ Let\ x, y \in G\ then\ x = a^r, y = a^s\ where\ r, s \in \mathbb{Z}$

Now
$$xy = a^r a^s = a^{r+s} = a^{s+r} = a^s a^r = yx$$

 $xy = yx \quad \forall x, y \in G : G \text{ is abelian group}$

Proof3: Let *G* be an abelian group and *H* be a subgroup

To prove that *H* is a normal subgroup of *G* (i.e. $\forall h \in H, \forall x \in G \implies xhx^{-1} \in H$)

Let $h \in H$, $x \in G$

$$xhx^{-1} = (x^{-1}h)$$
 (: $x \in G \Rightarrow x^{-1} \in G, h \in H \Rightarrow h \in G \Rightarrow x^{-1}h = hx^{-1}$, is abelian)
= $(xx^{-1})h$
= eh
= $h \in H$

 $xhx^{-1} \in H$ H is a normal subgroup of G

Theorem8: Evey quotient group of a cyclic group is also a cyclic group

Proof: Let $G = \langle a \rangle$ be a cyclic group generated by 'a'

$$i.\,e.\,G=\{\alpha^n/n\in\mathbb{Z}\}$$

Let N be a subgroup of G

since G is cyclic and hence N is abelan (\because Every cyclic group is always abelian)

 \therefore N is a normal subgroup of G (\because Every subgrop of an abelian is a normal subgroup)

$$\frac{G}{N} = \{ Na/a \in G \} \text{ is a quoti nt group } u \text{ d } r \text{ a } \cdot Nb = Nab \quad \forall Na, b \in \frac{G}{N} \}$$

To prove that $\frac{G}{N}$ is a cyclic group

$$i.\,e.\frac{G}{N} = < Na > \ (i.\,e.\frac{G}{N} \subseteq < Na > \ , < Na > \subseteq \frac{G}{N})$$

Let
$$a \in G \Longrightarrow Na \in \underset{N}{\longrightarrow} < Na > \in \underset{N}{\longrightarrow} < Na > \subseteq \underset{N}{\longrightarrow} < (1)$$

Let
$$Nx \in {}_{N} \Longrightarrow x \in G \Longrightarrow x = a^{p}$$
 where $p \in \mathbb{Z}$

$$Nx = Na^p = Na \cdot Na \cdot Na \cdot ... Na (p times)$$

$$= (Na)^p \in < Na >$$

$$\Rightarrow Nx \in < Na >$$

$$\therefore_N \subseteq < Na > \to (2)$$

$$F(1)$$
 and $(2)_{N} = < Na >$

 \therefore_{N} is a cyclic group

Theorem9: Every group of prime order is a cyclic. Is the converse true?

justify your answer?

Proof: Let G be a group such that o(G) = p where p is a prime

Let G be contains at least two elements, ce 2 is the least positive prime number.

Let 'a' be any element of G which is not an identity element ((e) = 1)

$$(a) \ge 2 \text{ Let } (a) = m \Longrightarrow a^m = e \text{ where } m \text{ is the least positive integer}$$

$$\therefore m \ge 2$$

Let $H = \langle a \rangle$ is a cyclic subgroup of G

$$i.\,e.\,H = \{a^m/m \in \mathbb{Z}\} = \{a^1,{}^2,a^3,\dots a^m,a^{2m}\dots\} = \{a^1,a^2,a^3,\dots a^m = e\}$$

$$o(H) = m = o(a)$$

By Lagranges theorem $o(H)|o(G) \Rightarrow m|p$

since p is a prime and $m \ge 2$

$$\therefore m = p \implies o(H) = o(G)$$

$$\Rightarrow H = G \Rightarrow G$$
 is a cyclic

∴ Every group of prime order is a cyclic

The converse of above theorem need not be true

i.e. Every cyclic group of order need ot be prime

For example $G = \{1, -1, i, -i\}$ is a cyclic group of order 4 but 4 is not a prime.

Theorem10: Every group of prime order is abelian

Proof: First we prove that 1. Every group of prime order is a cyclic

2. Every cyclic group is always abelian

Proof 1: Let G be a group such that o(G) = p where p is a prime

Let G be contains at least two elements, ce 2 is the least positive prime number.

Let 'a' be any element of G which is not an identity element ((e) = 1)

$$(a) \ge 2$$
 Let $(a) = m \Rightarrow a^m = e$ where m is the least positive integer

$$\therefore m \ge 2$$

Let $H = \langle a \rangle$ is a cyclic subgroup of G

$$i.e.H = \{a^m/m \in \mathbb{Z}\} = \{a^1, ^2, a^3, \dots a^m, a^{2m} \dots\} = \{a^1, a^2, a^3, \dots a^m = e\}$$

$$o(H) = m = o(a)$$

By Lagranges theorem $o(H)|o(G) \Rightarrow m|p$

since p is a prime and $m \ge 2$

$$m = p \implies o(H) = o(G)$$

$$\Rightarrow H = G \Rightarrow G$$
 is a cyclic

∴ Every group of prime order is a cyclic

Proof2: Let $G = \langle a \rangle$ be a cyclic group generated by a

i. e.
$$G = \{a^n / n \in \mathbb{Z}\}\$$
 Let $x, y \in G$ then $x = a^r, y = a^s$ where $r, s \in \mathbb{Z}$

Now
$$xy = a^r a^s = a^{r+s} = a^{s+r} = a^s a^r = yx$$

$$xy = yx \quad \forall x, y \in G : G \text{ is an abelian group}$$

Theorem11: Any infinite cyclic group is isomorphic to the additive group of integer.

proof: Let G be an infinte group generated by 'a'.

Thus
$$(a) = 0$$
 or \propto and $a^0 = e$

$$G = \{a^n/n \in \mathbb{Z}\}\$$
 and let $(\mathbb{Z}, +)$ be group under addition.

Define
$$f: G \to \mathbb{Z}$$
 by $f(a^n) = n \ \forall a^n \in G$

$$f \text{ is } 1 - 1 : Let \ a^i, a^j \in G \ \ni f(a^i) = f(a^j)$$

Since
$$f(a^i) = f(a^j) \Rightarrow i = j \Rightarrow a^i = a^j$$

$$f$$
 is on $-$ to: Let $k \in \mathbb{Z}$

$$a^k \in G$$
 and $f(a^k) = k$

f is homo: Let
$$a^i, a^j \in G \implies a^i a^j \in G$$

Now
$$f(a^i a^j) = f(a^{i+j}) = i + j = f(a^i) + f(a^j)$$

 \therefore f is an isomorphism from G to $\mathbb Z$

Theorem12: Every finite cyclic group G of order n is isomorphic to group $(\mathbb{Z}_n + n)$

Proof: Let G be a finite cyclic group of order n generated by a. so o(a) = n

$$G = \{a^0 = e, 1, a^2, \dots a^{n-1}\}$$

$$\therefore G = \{a^m/m \in \, \mathbb{Z} \; and \; 0 \leq m < n\}$$

$$\mathbb{Z}_n = \{0,1,2,...n-1\}$$
 is a group under $+_n$

Define
$$f: G \to \mathbb{Z}_n$$
 by $f(a^m) = m \quad \forall a^m \in G$

f is
$$1 - 1$$
: Let $a^i, a^j \in G \ni f(a^i) = f(a^j)$

Since
$$f(a^i) = f(a^j) \Rightarrow i = j \Rightarrow a^i = a^j$$

$$f$$
 is on $-$ to: Let $k \in \mathbb{Z}$

$$\therefore a^k \in G \ and \ f(a^k) = k$$

f is homo: Let
$$a^i, a^j \in G \implies a^i a^j \in G \implies a^{i+j} \in G$$

By division algorithm $\exists q, r \in \mathbb{Z} \ni i + j = nq + r \text{ where } 0 \le r < n$

$$a^{i+j} = a^{nq+r} = (a^n)^q a^r = e^q a^r = a^r$$

$$f(a^i a^j) = f(a^{i+j}) = f(a^r) = r = f(a^i) +_n f(a^j)$$

 \therefore f is an isomorphism from G to \mathbb{Z}_n