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UNIT-1: GROUPS

INTRODUCTION: A group is commonly studied as an abstraction of the number systems and
the system of permutations on set (i.e. the study of algebraic structures is called group)

N = The set of natural numbers = {1,2,3, ... ... ... }

Z = The set of integers = {........—3,—2,—-1,0,1,2,3, ... ... ... }
Z* = The set of positive integers = {1,2,3, ... ... ... }

Z~ = The set of negative integers = {........—3,—2,—1}

Q = The set of rational numbers = {B/p,q € Z and q # 0}
q
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Q* = The set of positive rational numbers = {2 g }
R — Q = The set of irrational number = {\/2,\/3,\/5,1T €, vervee e }

R =The setof realnumbers=NUZ U Q UR—-Q
R* = The set of positive real numbers

Qo = Q — {0} = The set of non — zero rational numbers

Ry =R —{0} = The set of non — zero real numbers
C={x+iy/,yeRandi?= -1}

Non-empty set: A set contains at least one element is called non-empty set.

Ex: A =1{1,-1,2,3,58,} is a finite set.

Prime number: A number P (>1) which divides 1 and itself is called as a prime number.
Ex: Prime numbersare 2, 3,5, 7 ...........

Composite number: A number P (>1) which is not a prime number is called as a composite
number.

Ex: Composite numbers are 4, 6, 8,9.........
Note: 1 is neither a prime number nor a composite number

2 is the only even prime




Binary operation (closure property): A non-empty set G with a operation (»: G X G = G) is
said to be a binary operationifa*b € G Va,b € G

Ex: ()(N,+):1+2=3€N;2+4€N
Leta,beEN, a+beN= +isa binary operation on N.
(ii)(N, —) is not a binary opertion because Leta = 1,b =2nowa—b =-1¢N

(iii)(N,x) is a binary opertion.Let a,b € N = ab € N
(iv)(N,=) is not a binary opertion because Leta =1, =2nowa + b = 5 ¢ N

Hence (N, +), (N,x) are binary operations but (N, —), (N,+) are not binary operations.
(Z,+),(Z,-),(Z,x) are binary operations but , (Z,+) is not binary operation

(Q +),(Q -),(Qx),(Q,~+) are binary operations

Algebraic system: A non-empty set G is said to be algebraic system if it contains one or more
binary operations.

Ex: () (N, +),(Z,-),(Q+),(R+) (@) (N,+x),(Z+ ), (Q+ —X), (R +,—X,+)
Groupoid: A non-empty set G is said to be groupoid if it contains a binary operation.

Remark: 1.Every groupoid is always an algebraic system but an algebraic system need not be
groupoid.

Associative property: A non-empty set G with a binary operation * is said to be associative if
(axb)*c=ax(bxc) Va,,c€ G

EX:
() (N, +), (N,x) are all satisfies associative property. but(Z, —) is not an associative

(ii)The set of all matrices is an associative under addition and multiplication.
i.e.(i)A+(B+C)=(A+B)+C(ii) A(BC) = (AB)C VA,B,C

(iii) The set of all complex numbers is an associative under addition and multiplication.
ie.(i)z1+ (22 + 23) = (21 + 22) + z3(ii) z1(2223) = (2122)23 VZz1,22,23€ C

3. Composition of mapping is an associative i.e.(feg)eh = fo(goh)Vf,g,h

4. (Q,—)is not associative. Since 3, -4,6,€e Q =3 - (-4-6)=(3—(-4)) - 6=> 13 # 1.




Semi group: A non—empty set G with a binary operation * is said to be a semi group if it
satisfies associative property.

Ex: 1. (N, +), (N,x) are all semi groups.
2. (Q, —) is not semi group

. Let G be non —empty set and * be a binary operation on G then there exist
anelement e € G suchthat a *xe=a=e * a Va € G Here ‘e’ is called the identity
element

Remark: (i) If *= + (Addition) then ‘0’ is the additive identity. ie. a+0=0+a=aVvVa €G
(ii) If * = x (Multiplication) then ‘1 ‘is the multiplicative identity ie. a. 1=1.a=aVvVa €G

Monoid: A non-empty set G is said to be Monoid if (i) * is a binary operation (ii) Associative
property (iii) Identity property

Ex: (i)(N, +), (Z, —) are not a Monoids
(i))(N,x), (Z,+), (Z,x),(Q,+), (Q@,x),(Q,+), (R, +), (R,X), (R,+) are all a Monoids

Inverse property: Let G be non —empty set and * be a binary operation on G then for each a €
G sothere exist b € G suchthat a*b=e =b xa where e is identity element.

Remark:

1. —ais the additive inverse of a. sincea+ (-a) =0=(-a) +a.

2. isthe multiplicative inverse of a for a # o since a ( a) =1= (a) a.
a

3.axb= ab ,Va, beR, Identity =K, Inverse= L, va €eR, a0

GROUP: A non-—empty set G with a operation = is said to be a group if it satisfies

1. Closure property: a*xb € G Va,b €G

2. Associative property: (a*b) xc =ax(b*c) Va,b,c €G

3. Identity property: sode€G3a*xe=a=-ex*a Va € G here eis called the idntity
4. Inverse property: Foreacha € Gso3b € G suchthat axb=e=bx*a

here b is the inverse of a

Ex:(i) (N,+) isnota groupas 0 ¢ N




(ii)(N,x) is not a group as inverse property is failure (* 2 € N, 2 (%) =1 but% ¢ N)

(iii)(Z,+), (Q,+), (R, +) are all groups but (Z,X) is not a group as inverse failure.
(iv)(Q,x), (R,x) are not groups as 0 does not has inverse.

(v) (Qg,%), (R y,X) are all groups
Note: (Z, +), (Q, +), (R, +), ( Qg,%), (R ,X) are all groups
Commutative property: A non—empty set G with a operation = is said to be commutative if
a*b=b*xa€G Vabeal
: A group G is said to be an abelian group if it satisfies the commutative property.

Ex: (Z, 1), (Q+), (R, +), (Qy,X), (R ,,X) are all abelian groups

: A group G is said to be finite group if number of elements in group is finite
Ex: (i) G ={1,-1},¢ ={1,,%},G ={1,—1,i,—i} are all finite groups
under multiplication.
Infinite group: A group G is said to be infinite group if number of elements in group is infinite
Ex: (Z,+),(Q +), (R, +), (Qq,X), (R (,X) are all infinite groups

Order of group: Number of elements in a group is called order of group. And it is denoted by o
(G) or [G]

Ex: (i) G = {1, -1} is a group under multiplication so (G) = 2
Problems:

1. Prove that the set of positive rational numbers form an abelian group under * is defined
by ax b =

Sol: G = The set of all positive rational numbers = Q*

ab

and = is defined byaxb =" Va,b € Q*
To prove that (G,*) is an abelian group
(i) Closure property: Leta,b € Q*t = ab € Q* = % EQt=axbeQt

~a*b€G Va,beG




(i) Associative property: Let a,,c € Q*

b CIF b b a % b
(a*b)*c=(a?)*c= 33 =% and a*(b*c):a*(?c)z 33 =%

“(axb)*xc= ax*x(bxc) VYa,b,c € G

(iii) Existence of identity: Let a € G and 'e' be the identity element

ae
Nowaxe=a= =a=e=3

3 ..
Nowaxe=ax*3 =a.” =asimilarlywecanproveexa=a = “=a=e =3

=~ The identity element is 3

(iv) Existence of inverse: Let a € G and ' b’ be the inverse of a

ab 9
Nowaxbh=e = =3=ph=

The inverse of ais so every element has invertiable
a

v) Commutative property: Leta, € G Nowa*b = =""=hxq
(V) property

~axb=bxaVabe€eG
. (G,*) is an abelian group.

2. Prove that the set Zof all integers form an abelian group w.r.t the operation defined by
axb=a+b+2Va, €Z

Sol: G = The set of all integers = Z

and = is defined byaxb =a+b+2Va, €Z

To prove that (G,*)is an abelian group

(1) Closure property: Leta,b€Z—=>a+b€Z=a+b+2€Z=a*xb€EL
~a*xbeG Va,beG

(1) Associative property: Let a,,c € Z
(ax*b)*xc=(a+b+2)xc=(@a+b+2)+c+2=a+b+c+4

and ax(bxc)=a*x(b+c+2)=a+b+c+2)+2=a+b+c+4




“(axb)*xc= ax*x(bxc) Ya,b,c € G

(iii) Existence of identity: Let a € G and 'e' be the identity element
Nowaxe=a=a+te+2=a=e=-2

Nowaxe =ax (—2)=a+ (—2) + 2 = a similarly we can prove
exa=a=>>et+at+2=a=e=-2

=~ The identity element is — 2

(iv) Existence of inverse: Let a € G and ' b'be the inverse of a
Nowa*b=e=a+b+2=-2=b=—-4—-a

The inverse of ais —4 —a so every element has invertiable
(v) Commutative property: Leta,b € G Nowa*b=a+b+2=b+a+2=>bxa
~axb=bxaVabe€eG

~ (G,*) is an abelian group.

3. Prove that the set Zof all integers form an abelian group w.r.t the operation defined by
axb=a+b+1Va, €Z

Sol: G = The set of all integers = Z

and * is defined byaxb =a+b+1Va, €Z

To prove that (G,*)is an abelian group

(1) Closure property: Leta,b€eZ=>a+b€Z=a+b+1€Z=a*xb€EL
~a*xb€G VYa,beG

(1) Associative property: Let a,,c € Z
(ax*b)*c=((@+b+1)*xc=(@+b+1)+c+1=a+b+c+2

and ax(bxc)=a*x(b+c+1)=a+b+c+1)+1=a+b+c+2
~(a*xb)*c=ax*x(bx*c) VabceG

(iii) Existence of identity: Let a € G and 'e' be the identity element

Nowaxe=a=a+e+1=a—=e=-1




Nowaxe=ax*(—1)=a+ (—1) + 1 = a similarly we can prove
exa=a=>et+a+l=a=e=-1

~ The identity element is — 1

(iv) Existence of inverse: Let a € G and’ b'be the inverse of a
Nowa*b=e=>a+b+1=-1=b=-2-a

The inverse of ais —2 —a so every element has invertiable

(v) Commutative property: Leta, € G Nowa*b=a+b+1=b+a+1=bx*a
~ax*b=bxaVabe€eG

~ (G,*) is an abelian group.

4. P.T the set G of rational (real) numbers other than 1 with operation

a@b=a+b—-ab Va,b € G is an abelian group. Hence show that x = ) is a solution

of the equation (4 §5) Px=7

Sol: G =R —{1}

and @ isdefinedby a@b=a+b—ab VabeG

To prove that (G,@)is an abelian group

(i) Closure property: Leta,b € G wherea# 1€ R, # 1€ R
sincea, EG = a+b € Gand ab € G wherea+b —ab #1
=a+b—abeEG=a®bEG

~a@®beG Va,beG

(1) Associative property: Let a,,c € G
(a®b)®dc=((@+b—ab)Pc= (a+b—ab)+c—(a+b—ab)c
=a+b+c—ab—bc—ac+abc

Next a®@ (b@Dc)=a® b+c—bc)=a+(b+c—bc)—a(b+c—bc)

=a+b+c—ab—bc—ac+ abc
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c(a®b)Dc=a@BDc) Vabced

(iii) Existence of identity: Let a € G and 'e' be the identity element
Nowa@Pe=a=a+e—ae=a=>1—-a)=0=e=0 sincea#1
Nowa@e=a® (0)=a+ (0) — (0) = a similarly we can prove
e@a=a=>e+a—-ea=a=1-a)=0=>e=0 since a*1

= The identity element is 0

(iv) Existence of inverse: Let a € G and’ b'be the inverse of a

Nowa®db=e=a+b—ab=0=((1—-a) =—a ﬁb:l—a=a—1

The inverse of a is ., S0 every element has invertiable

(v) Commutative property: Leta,b € G Nowa@b=a+b—ab=b+a—-ba=b@a
~a@b=b@PaVabeca

~ (G,®) is an abelian group.

(45 Px=7T=(4+5-200Px=7

=>—116|9x=7=>(—11+x+11x)=7=12x=18=x=2

5. P.T the set G of rational (real) numbers other than —1 with operationa @ b =a + b +
ab Va, € G is an abelian group. Hence show that x = — 5 is a solution of the equation

2®x)B3=7

Sol: G =R —{-1}

and @ isdefinedby a@®@ b =a+b+ab Va,b€eG

To prove that (G,6D)is an abelian group

(1) Closure property: Let a,b € G wherea +# -1 € R,b # -1 € R
sincea, €EG = a+b € Gandab € G wherea+b +ab #1

= a+b+abeG=>aPbeGC

~a®bEG VYa,beG
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(1) Associative property: Let a,,c € G

(a®b)®dc=(a+b+ab)®c= (a+b+ab)+c+(a+b+ab)c
=a+b+c+ab+bc+ac+abc

Next a® (bBc)=a® b+c+bc)=a+((b+c+bc)+alb+c+bc)
=a+b+c+ab+bc+ac+abc

2 (a®b)Dc=a(@BBDc) Vabced

(iii) Existence of identity: Let a € G and 'e' be the identity element
Nowa®e=a=a+e+ae=a=1+a)=0=e =0 since a+* —1
Nowa@e=a® (0)=a+ (0) + (0) = a similarly we can prove
ePa=a=et+at+tea=a=>1+a)=0=e=0 since a+ —1

=~ The identity element is 0

(iv) Existence of inverse: Let a € G and’ b'be the inverse of a

Nowa®b=e=a+b+ab=0=14+a)=—-a =b=1+a

The inverse of a is ., Soevery element has invertiable
a

(v) Commutative property: Leta,b € G Nowa @ b=a+b+ab=b+a+ba=bPa
~a@b=b@PaVvVabea

~ (G,®) is an abelian group.

(2Bx)D3=7T=QL+x+2x)PH3=7

= 24+3x)P3=7=[2+3x)+3+3@2+3x)]=7

=[2+3x+3+6+9x] =7

=>12x+11=7:>12x:—4:>x:_§

cosa —sina]
sina cosa
multiplication if cos@ = cosp = 0 = ¢.ls it abelian?

6. P.T the set of matrices 4, = [ where a € R forms a group w.r.t. matrix
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o = e Rand 4, =50 20

To prove that (G,-) is a group

(i) Closure property: Le, €G

=SNG gng 4, = [€OSB —sinfs

where A, = | sinB  cosp

sina

—sina cosf —sinf cos(a + B) —sin(a+p)
sina  cosa sinf  cosP sin(fa +B) cos(a+B) a+p

NOWAa . Aﬁ = [
since e, FER=a+BER
=~ - is a binary operation on G

~ G has closed under multiplication

(i) Associative property:A, ,Ag, A, € G where a, 5,y € R
(Aa-Ap) - Ay = (Aasp) * Ay = Aarp)+y

= Aarp+y) = Aa " Apey) = Ao~ (Ap - 4y)

- - is an associative on G

(iii) Existence of identity: LetA, where a € R

—sin0 1

we have Ap= [sinO cos0 0 1]

NOWAa' AO :Aa+0: Aa

also Ay Ay = Aoy = Ag

=~ The identity element is [O 1]

(iv) Existence of inverse: LetA, where a € R
sincca ER = —a€eR= A_,€EGC

Now Ay - A_q = Aay—a) = Ao

also A_, - Ag = A_qia) = Ao

A_, is the inverse of A,




~ Every element in G has multiplicative inverse.
~ (G,) is an abelian group.

(v) Commutative property: Le, €G

Now Ay -Ag = Agsp = Apra = Ap - Ag

wAg-Ap =Ap- Ay VAy ,Ap €EG

~ (G,) is an abelian group.

7. If G is the set of even integersie. G ={.....—4,-2,0,2,4, ... ... } then prove that G is an
abelian group w.r.t addition as the operation.

Sol: ¢ ={.....—4,-2,0,2,4, ... ... } ={2n/n € Z} = Set of Even integers
To prove that (G, +) is an abelian group

(i) Closure property: Let a,b € G thena = 2n, = 2mwheren, € Z
=a+b=2n+2m=2n+m)=2l € Gwherel=m+ne’Z

= a+beG

~a+b€eG Va, €G

(1) Associative property: Let a,,c € G thena = 2n,b = 2m,c = 2p wheren,m,p € Z
(a+b)+c=02n+2m)+2p =2[(n+m) + p]
=2[((n+(m+p)l=2n+C2m+2p)=a+ (b+c)
~(a+b)+c=a+b+c) Vabc€eG

(i) Existence of identity: Let a € G thena = 2nwheren € Z

we have 2(0) € G

Nowa+e=2n+2(0)=2(n+0)=2n=a

~ The identity element is 2(0) =0

(iv) Existence of inverse: Let a € G thena = 2nwheren € Z
sincen€Z = n€zlZ—=—-2n€eZ= —-a€G

now a+ (—a)=2n-2n=2(0)=0
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The inverse of ais — a
~ Every element in G has additive inverse.
(v) Commutative property: Let a,b € G
Nowa+b=2n+2m=2m+2n=>b+a
~a+b=b+aVvVabeca
~ (G, +) is an abelian group
8. S.T theset G = {x/x = 293% and a, € Z} is an abelian group under multiplication.
Sol: G = {x/x = 293" and a, b € 7}
To prove that (G,-) is an abelian group
(i) Closure property: Let x,y € G then x = 2%3?,y = 2¢39 wherea,b,,d € Z
= xy = (2930)(2¢3%) = 24+c3¢+d = 2i3m e Gsincel=a+c€Zm=c+d €T
= Xy € G ~XyEG VX, yEG
(if) Associative property:
Letx,y, € G thenx = 293>, =234, = 2¢3/ wherea,b,c,d,e,f € Z
(xy)z — [(2a3b)(zc3d)]ze3f = 2(a+o)+egz(b+d)+f
— pa+(c+e)3b+(d+f)
= 243[(2¢+¢39+/]
= 243[(2°3%)(2°3/)] = x(y2)
~(xy)z=x(yz) Vx,y,z€G
(ili) Existence of identity: Let x € G then x = 243> wherea,b € Z
we have 1 = 2°3° € G since 0 € Z
Now x -1 = (293?)(2°30) = 2a+03b+0 = 2a3b = x
~ The identity element is 1 = 2°3°

(iv) Existence of inverse: Let x € G then x = 243> where a,b € Z




sincea, EZ= —a,-b€Z = 27937 eG

now x - (27237?) = (243b)(2-237P) = 24-a3b-b = 2030

The inverse of 2¢3% is 2743~P

~ Every element in G has multiplicative inverse.

v) Commutative property: Let x, € G then x = 2¢3%, = 2¢3¢ where a,,c,d € Z
= xy = (203b)(2¢34) = patc3etd = petazdic = (2c3d)(2a3D) = yx

SXy=yxX Vx,y€G

~ (G,") is an abelian group

9. S.T the setG = {... ... 273,272 271 212223 . } is an abelian group under
multiplication.

Sol: G ={...... 273,272,2711,21,22,23 .. ... }={2"/neZ}
To prove that (G,-) is an abelian group
(i) Closure property: Let x,y € G thenx = 2%, y = 2> wherea, € Z
= xy = (2920) =29t =2l € G sincel =a+ b € Z,
=Xy EG ~XyEG VX, yEG
(if) Associative property:
Letx,y, € G thenx = 2%,y = 2b, = 2° wherea,b, €L
(xy)z — (Zazb)zc — [2(a+b)]2c = 2a+(b+o)
= 2[2b+]
= 2(2P2°)
= x(yz)
~(xy)z=x(yz) Vx,y,z€G
(111) Existence of identity: Let x € G then x = 2* wherea € Z
we have 1 = 2° € G since 0 € Z

Nowx-1=(2%)(2°% =220 =22 =

15




~ The identity element is 1 = 2°

(iv) Existence of inverse: Let x € G then x = 2* wherea €Z

sinceca € =—-a€Z=2""€G

now x-(27%) = (24)(27%) = 297a =20

The inverse of 2% is 2™ ¢

~ Every element in G has multiplicative inverse.

(v) commutative property: Let x,y € G then x = 2%,y = 2> wherea,b € Z
= xy = (2“)(2b) = patb — pbta — (Zb)(Za) = yx

SXy=yxX Vx,y €G

~ (G,") is an abelian group

10. S.T the set of all ordered pairs (a, b) of real numbers for which a # 0 w.r.t the
operation x defined by (a, b) X (¢,d) = (ac, bc + d) is a group.

Is the group commutative?

Sol: G ={(a,)/a#0€R,beER}

The operation x defined by (a, b) X (¢,) = (ac, bc + d)

To prove that (G,X) is a group

(1) Closure property: Let (a, b),(c,d) € G wherea # 0 € R,c # 0 € R
= (a,) X (c,d)=(ac, +d)e Gsincea#+0€ER,c+#0€ER=ac+0€ER
= (a,b) X (c,d) € G ~(a,b) x(c,d) Vx,y e G

(if) Associative property:

Let (a,b),(c,d),(e,f) € Gwherea+0€R,c+0€R,e+#0E€R,
[(a,b) X (c,d)] X (e,f) = (ac,bc + d) x (e, f) = [(ac)e, (bc + d)e + f]
= (ace,bce + de + f)

Next (a,) X [(c,) X (e, )] = (a,b) X (ce,de + ) = ((ce),bce + de + f)

= (ace,bce + de + f)

16
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[(a,b) % (¢, d)] x (e, f) = (a,b) X [(c,d) x (e, /)]

(i11) Existence of identity: Let (a, b) € G (x, y)be the identity in G
Now (a,b) X (x,y) = (a,b) = (ax,bx +y) = (a,b)

= ax=abx+y=b=x=1y=0

= The identity element is (1,0)

(iv) Existence of inverse: Let (a,b) € G (c,d)be the inverse in G

(a,b) x (¢,d) = (1,0) = (ac,bc +d) = (1,0)
=ac=1,bc+d=0=c=, —b(—>=d

(c,d) = (a' - a) is the inverse of (a, b)

~ Every element in G has inverse.

(v) Commutative property: Let (a, b),(c,d) € G wherea # 0 E R,c # 0 € R

= (a,b) X (c,d) = (ac,bc + d)

= (c¢,d) X (a,b) = (ca,da + b)

o (a,b) X (c,d) # (¢,d) X (a,b)

~ (G,x) is not an abelian group

11. P.T the set of n** root of unity under multiplication forms a finite abelian group. (OR)

P.T the set G = {a/a™ = 1}er multiplication form a finite abelian group.
1
Sol: 6 = {x/x = V1} = {x/x = 1.} = {x/x" = 1}

we have 1 = cos0 + isin0 = cos2mw + isin2mw

= cos2km + isin2km wherek =0,1,2,..n—1

1 1
x = 1n = (cos2km + isin2km)

2km T _ 2km
= X = cos (T) + isin (T) =e"“n) wherek=0,12,..n—1




G=(1,2..0") wherew=e ) 5 om=1

To prove that (G,-)is an abelian group

(i) Closure property: Leta,b € G thena™ =1, b" =1
now (ab) = a™h* =11=1

~(ab)=1=ab€G Va,beG

(1) Associative property: Since all elements in G are complex numbers and hence
multiplication is associative in G

(ii1) Existence of identity: Let w”™ € G where0 <r <n -1
we have 1 = w® € G
Now " - w® = w™*0 = "

~ The identity element is 1 = w°

(iv) Existence of inverse: we have 1.1=1

Let w" € G be any elementof G wherer =1,2,..n—1
LW EG
now w”" - " =w" =1
The inverse of w" is w™™"
~ Every element in G has multiplicative inverse.
(v) Commutative property: Leta, € G thena = w",b = w®* where0 <r, <n-—1
=ab=0"w’=0"=wt =ww" =ba
~ab=ba Va,b €G
~ (G,") is finite an abelian group
12. P.T the set of 4" root of unity under multiplication forms a finite group. (OR)

P.T theset G = {1,—1, i, —i}under multiplication form a finite abelian goup.
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G ={x/x=V1}={x/x = 1;1}={x/x4= 1} =

{1,-1,,-i} . 1 -1 i —i
To prove that (G,-)is an abelian group 1 1] -1 i | =i
Construct a composition table for G under multiplication -1 -1 1 | —i| i
: We observe that all elements in C.T i [ - -1 1
are the elements of G. - - is a binary operation on G. —i | —i i 1| -1

: From C.T we observe that all the elements are complex numbers and
hence multiplication is associative

: From C.T we observe that the row headed by 1 is coincide with the
toprow of C.T. - 1isthe identity elementinG.

: From C.T we observe that the identity elements 1 contains in each
row.

The inverse of 1,—-1,i,—i are 1,—1, —i,i respectively.
~ Each element in G has multilicative inverse

: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G,-) is finite an abelian group.

13. P.T the set of cube root of unity under multiplication forms a finite group. (OR)

P.T the set G = {1,, w*}under multiplication form a finite abelian group.

G={x/x=YT}=={x/x3=1}={1,, 0?}

To prove that (G,-)is an abelian group 1 ® | o
Construct a composition table for G under multiplication 1 1 w w*

: We observe that all elements in C.T w w w* 1
are the elements of G. .. - is a binary operation on G. w® | @ 1 W

: From C.T we observe that all the elements are complex numbers and
hence multiplication is associative

( : From C.T we observe that the row headed by 1 is coincide with the
toprow of C.T. . 1isthe identity elementingG.




: From C.T we observe that the identity elements 1 contains in each
row.

The inverse of are 1, w, w? are 1,2, w respectively.

«~ Each element in G has multilicative inverse

: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G,-) is finite an abelian group.

14. P.T the set of square root of unity under multiplication forms a finite group. (OR)

P.T the set G = {1, —1}under multiplication form a finite abelian group

1 0, -1 0, -1 0,1 O

I5.8T6={l; 1.1, .0y 3l 4

multiplication.

} is a group w.r.t matrix

Find the identity and the inverse of every element

1 0

[ -1 0 -1 -9 1
0 1

1.B=]

To show that G = {4, B,, D} is a group under multiplication.
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Construct a composition table for G under multiplication A B c|D

: We observe that all elements in C.T A A B ¢ D

are the elements of G. .. - is a binary operation on G. B B A b c

( : From C.T we observe that all the elements ¢ ¢ D A | B

are complex numbers and hence multiplication is associative D D C B 4
: From C.T we observe that the row

headed by A is coincide with the top row of C.T. .. A is the identity element in G.

: From C.T we observe that the identity elements A contains in each
row.

The inverse of A,B,,D are A,B, C, D respectively.

~ Each element in G has multilicative inverse Th(G,") is a group

: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G,-) is finite an abelian group.
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Klein-4 group: A group of order 4 whose every element is its own inverse is called kleins-4
group Ex: The above group is kleins-4 group

Cancellation laws: Let G be a non-empty set and * be a binary operation on G .For each a, b, c,
€ G then (i) axb=axc= b=c left cancellation laws and(ii) bxa=c*a =b=c right cancellation law

Theoreml: In a group (G, ) cancellation laws holds

Proof: Given that (G,")isagroup. Leta € Gsoda ' €G daal=e=ata

Leta,b,c € G

Now ab = ac
Multiplying with a™!

= a(ab) = a'(ac)

= (a!') =(ata)c [ - is associative ]

=eb=ec=b=c [ 1=e=a
~ ab = ac = b = c (left cancellation)

Similarly :
Leta,b,c € G

Now ba = ca = (ba) ' = (ca)a = b(aa ) =c(aa™?) > be=ce = b =c
. ba = ca = b = c (right cancellation)
Theorem2: The identity element in group (G,-) is unique.
Proof: Given that (G,-) is a group
If possible suppose that e;, e, be two identities in (G,-)
Since e, is the identity element . e,e; = e, = eje, — (1)
Also e, is the identity element . eje, = e; = eze; — (2)
Now e, = e;e, from (1)
=€ f(2)
“ex2=€

=~ The identity element in group (G,-) is unique
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Theorem 3: Every element in a group(G,-) has unigue inverse

Proof: Giventhat (G,) isagroup. Leta € G, e be the identity element in G
If possible suppose that a have two invertible elements b, c.

Since a is the inverse of ‘¢’ s ac=e=ca  ........ (1)

Also a is the inverse of ‘b>  ~ ab=e=ba  ........... (2

From (1) and (2) ac=ab =c=b (~ By left cancellation law)

=~ ‘a’ has unique inverse.
It follows that every element in a group G has unique inverse.
Theorem4: If(G,) is a group then (ab)™* = b 1a™! Va,b,€G
Proof: Given that (G, -) isa group. Leta, b €@,
Let a 'be the multiplicative inverse of ‘@’= aa ! =e = a la
Let b™* be the multiplicative inverse of ‘0> =b b1 = e = b~1b
Claim: (ab)1 = b-1q1
Now (ab)(b~1a™1) = [(ab)b~1]a™! (- - is an associative)

=[a(bb™)] a™? (Again - is an associative)

= [ae]la™!
—aal=e (e is the identity element)
(@)(blaH=e - @)

Now (b la=1)(ab) =[(b~'a V)a]b (- - is an associative)
= [b~'(a ta)]b (Again - is an associative)
= (b~le)b
=b'b=e (e is the identity element)

(b~la )(ab) =€ - )

From(1) &(2) (b~laY)(ab) =e = (ab)(b~'a™)
= (ab)'=b1ta?
(ab)"'=b"la™! vab €G

Theorem5: In group (G, <) for X, vy, a, b, € G then the equations ax=b and ya=b have a
unique solution.

Proof: Giventhat (G, -) isagroup. Leta, b €G,




Sincea,beG ax=0>b
= al(ax)=ath
= (a la) =a b
=ex =a'bh
=x=a'h

Butif x =a™ b
Now ax=»h
= (a 'h) =b
= (aa ) =b
=eb=0>
=b=5>b

x = a~1b is the solution of the equation ax=h.

Uniqueness part: If possible suppose that x4, be two solutions of ax=b,
ax; =bandax, =b
= ax{ = ax;
= x1 = x (By left cancellation law)

=~ Solution is unique.
Similarly ~ y = ba™! is the solution of ya =h.

If possible suppose that vy, y, be the solution of ya=b.

~ yia=bandy,a=D>b
= yia =Yqa
= y; = ¥ (By Right cancellation law)

=~ Solution is unique.

Hence the equations ax=b and ya=b have unique solution.
Theorem6: If (G, ¢) is a group then (ab) = a?b? & (G, *) is an abelian group.
Proof: Leta, b eG = ab eG

(ab)? = a?b? & (ab)(ab) = (aa)(bb)

& [(ab)] = [(aa)]b (~ - isan associative)

23




& [a(ba)]b = [a(ab)]b
< a(ba) = a(ab)
< ba=ab

& (G, -) is an abelian group

Theorem7: Inagroup (G, ) V a, € G a? = e then prove that G is an abelian.
(OR)

In a group (G, *) every element has its own inverse (i.e. a = a ! = a? = e V a, € G) then
(G, ) is an abelian group.

Proof: Leta, b, € G ~ abe G
SincevaeG a?=ce,

we have (ab)? = e

= (ab)(ab) =e

= ab = (ab) "' =b"1lat
= ab=b"la! — (1)

Buta?=e=aa=e=a=a! Similarly b?>=e=bb=e= b =>b""1
From (1) ab=ba= G is an abelian

(OR)
Leta,be G ~ abe G By hypothesis a =a=! b =b"1 and ab = (ab)™!

Since ab = (ab)™!
= ab=b"la!
=ab=ba ( a=a?! b=b1)

~ab=ba VabeG
Theorem8: An algebraic system (G, -) is a group < (i).(b.c) = (a.b).c Va,b,c € G
(ii)The equations ax = b,ya = b have unique solution for each x,y,a,b € G
Necessary condition (=): Given that (G, -) is a group

Since (G, *) isa group= a.(b.c) = (a.b).c Ya,b,c € G
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To prove that in a group (G, ) The equations ax = b, = b have unique
solution for each x,y,a,b € G. Leta, b €G,
Sincea, beG ax =0»b
= al(ax)=ath
= (a™la) =a b
=ex=a'bh
=x=a'h
Butif x =a™'b
Now ax=bh
= (a 'h) =b
= (aa ) =b
=eb=0>
=b=5>b

x = a~1b is the solution of the equation ax=h.

Uniqueness part: If possible suppose that x4, be two solutions of ax=b,
ax; =bandax, =b
= ax; = ax;
= x1 = x (By left cancellation law)

=~ Solution is unique.
Similarly ~ y = ba™! is the solution of ya =h.

If possible suppose that y, y, be the solution of ya=b.

~ yia=bandy,a=D>b
= y1a = Yy,a
= y; = ¥ (By Right cancellation law)

=~ Solution is unique.
Hence the equations ax=b and ya=b have unique solution.

Conversely given that (G, -) is an algebraic system such that
(i).(b.c)=(a.b).c Va,b,c €G

(ii)The equations ax = b,ya = b have unique solution for each x,y,a,b € G
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To prove that (G, -) is a group. For this we have to show that (i) G has identity element(vb €
G,3de€G3b.e=b=ce.b)

(if) Every element in G has multiplicative inverse (Va € G so3b € G 3 a.b =e)
Since the equations ax = b, ya = b have unique solution for each x,y,,b € G

The equations ax = a has unique solution for each a € G
Letitbee € G --ae =a
Also the equations ya = b has unique solution for each a, € G
Letitbed € G ~.da=b
Letb € G
Now be = (da)e
= d(ae)
=da=»b
s be =b = eis the identity element inG.
Leta € G,ande € G
Since the equation ax = e has unique solution for each a,e € G
Letitbeb € G s ab = e = b is the inverse of a.
Each element in G has multiplicative inverse.
=~ (G,) is a group
Theorem9: In finite semi group (G, -) cancellation laws holds then (G, -) is a group
: we know that in semi group (G, -) the equations ax=b and
ya =b have a unique solution for each X, y, a, b, € G then (G, -) is a group.
We prove this theorem it is enough to show that the equations ax=b and
ya =b have a unique solution for each x,y, a, b, € G.

Let G ={ay,ay,,..a,} be have ‘n’ distinct elements and (G, -) is a semi group satisfies
cancellation laws.

Let a£0e G
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Consider let aG = {aay, 2,, ...aa,}

To show that aG=G, Let peaG =p=ax, forsome x,€ G 1<k<n
Sinceae G, X, eG=>ax€G =peG=aG S¢

If possible suppose that aa; = aa for i

= a; = a; (By left cancellation laws)
Which is contradiction to G has ‘n’ distinct elements

~ aG has ‘n’ distinct elements and G has ‘n’ distinct elements. and aG € G
~ aG =G
Letbe G=beaG ( aG=0G)
= b = ax, for somex, wherel <p<n
To show thatx,, will be a unique solution.
If possible suppose thatx,,, x, be the solutions of ax=b.
. ax,=b ax,=b
Lax,= axg
=X,=Xgq (By left cancellation laws)
Hence there exist unique solution x,€G for ax=b.
~ The equations ax=b has a unique solution for each a, b €G.
Next consider a set Ga = {a,a,,qa,, ...a,a}
Similarly we can prove that the equation ya=b has a unique solution for each a, b €G
~ (G, -) is a group.

Theorem10: Let G be a group .Let a, b € G. Then prove that (ab) = a™b™ when G is
abelian and n eN

: For n €N we prove that this result by mathematical induction on n N
Lets(n) be (ab) = a™b™

Forn=1 (ab)! = ab




= alp?
s (1) is true.
We can assume that the s(n) is true for some n=ke N

(ab)¥* = akb*
Now(ab)¥*1 = (ab)*(ab)
= (a*b*)(ab)
= (akb*)(ba) ( Gisan abelian)
= ak*(b*b)a ( °2 is an associative)

= aka(b*b) ( Again G is an abelian)
= qltipk+1
S (k+1) is true.

Theoremll: If G is a group such that (ab) = a™b™ for three consecutive integers m for
all a, b, € G, show that G is abelian.

To prove that ab=ba Va, be G
Let a, be G and m, m+1, m+2 be three consecutive integers
(ab)™ = a ; (ab)™+! = @m+ipm+l (ab)™+2 = gm+2pm+2
Now  (ab)*? = (ab)™*1(ab)
= (ab)*? = a™*1b™*+1(ab)
= aa™"1p™*1h = aa™(ab)
= a™"1p™*1h = a™(ab) (ByL.C.L)
= a™*t1pm*tl = ambh™ba (By R.C.L)
= (ab)*! = (ab)™(ba)
= (ab)™(ab) = (ab)™(ba)
= ab=baByL.C.L
ab =baV a beG

~ G is abelian.
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Addition modulo M: Let a, € Z and Mbe fixed positive integer.If r is the remainder
(0 <r < M)whena + b is divided by M.We define a+,,b = r.

We read it as "a addition modulo M b"

Ex: 1) 3445 = 0 (B+5=2=0) 2) 3447 =2 B+7=2=2)
3) 5456 =1 G+6=""=1)
Multiplication modulo P: Let a, € Z and Pbe fixed positive integer.If r is the

remainder (0 < r < P)hen ab is divided by P.We definea Xp b = .

We read it as "a multiplication modulo P b"
Ex:1)3 %45 =3 (Bx5="=3) 2)3x,7=1 Bx7="=1)

3)5x56=0 G5x6="=0)

A congruent to b modulo M: Let a, € Z and Mbe fixed positive integer.If r is the
remainder (0 <r < M).If a — b is divisible by M. (or divides by M)

then we say that a is congruent to b moduloM and it is denoted by a = b (modM)
i.e.a=b (modM) < M|(a — b)

EX:.4 =2 (mod2) = (2|(4 — 2) = 2|2)

Theoreml: The set G ={0,,2,3,....(m — 1)} of first m positive integers form an
abelian group under addition moduloM

Proof: If a, € Zand m € N then a+,,b = r where r is the remainder whena + b
is divided bymwhen0 <r<m-1

(i) Closure property: Leta,b € G then0 <a<m—1and0 <b<m-1
~at,b=1 €G since0 <r<m-1

s~ a+,b €G +,,isabinaryonG

(11) Associative property: Let a,b,c € G
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Now ( +,,b) +m ¢ = (a + b)+,,c = remainder r when(a + b) + c is divided by 'm’
= remainder r' when a + (b + ¢) is divided by 'm'
=a+,,(b+c)
= a+,,(b+,.0)

s~ (a+,b) +m ¢ = at,,,(b+,,.0)

(111) Existence of identity: We have 0 € G

Leta€ Gthen0<a<m-1

Now a+,,0 =a = 0+,,a

~ The identity elementise =0

(iv) Existence of inverse: we have 0+,,0 =0

Leta€eGthenl<a<m-—-1-m—-—a€G

Nowa+(m—a)=0=(m—a)+,,a

. m — a is the additive inverse of 'a’

Each element in G has additive inverse.

(v) Commutative property: Leta,b € G

Now a+,,b =r when a + b is divided by m

=71 whenb + a is divided by m
= b+,,a

~ (G, +,)isan abelian group

Theorem2: The set of (p —1)egers G ={1,2,3,....(p — 1)}where p is aprime

form an abelian group of order (p — 1) under multiplication modulo p.

Proof: If a,b € Zand p € Nthena X, b = r wherer is the remainder when ab
is divided by p when0 <r <P

(i) Closure property: Leta,b € Gthen1l <a<p—-1andl1l <b<p-1

since p is aprime number so ab cannot be divisible by p.
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so the remainder cannot be equal to zero.so we shall have 1 <r <p —1

“aXp,b=1 €G sincel <r<p-1

~aX,b€G ~X, Isa binary on G

(11) Associative property: Let a,b,c € G

Now ( X, b) X, ¢ = (ab) X, ¢ = remainder r' when(ab)c is divided by 'p’
= remainder r when a(bc) is divided by 'p’
= a X, (bc)
=a X, (bX,c)

s~ (axy,b)X,c=ax,(bX,c)

(i11) Existence of identity: We have 1 € G

Leta€eGthenl<a<p-1

NowaX,1l=a=1X,a

~ The identity elementise =1

(Iv) Existence of inverse: Lets € Gthen1 <s<m-—1

Considr the productof p—1=1X,5,2X%,53X,5...(p—1) X, s

All these elements ar the elements of G by binary operation and

all these elements are distinct

If possible suppose that two elements are equl

[X,s=jX,swherei#jandl1<i<p—-landl<j<p-1

= is and js have the same remainder when each is divided by 'p’

= is — js is divisible by 'p’

= plis—js = pl(i—j)s=pli—jorpls

whichis a contrdicttol1 <i—j<p—2

Hencei X, s #j X, s ~ all elements are distinct




And also one of these elements must be equal to 1
sincel€Gsodk €G3k X,s=1=sX,k = kistheinverseof s
Each element in G has multiplicative inverse.
(v) Commutative property: Let a,b € G
Now a X, b =r when ab is divided by p

=1 when ba is divided by p

=bX,a

=~ (G,X,) is an abelian group

Problems:
1. P.T the set G = {0,, 2, 3,4} is an abelian group of order ‘5’ w.r.t. addition modulo’5’

Sol: Given G = {0,1,2,3,4} under '+5'
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+5 0 1 2 3
Construct a composition table for G

0 0 1 2 3
(1) Closure property: we observe that all
elements in C.T are the elements of G 1 1 2 3 4
'+5'is binary on G 2 2 3 4 0
(1) Associative property: Let a,b,c € G 3 3 4 0 1

4 4 0 1 2

Now ( +sb) +s5 ¢ = (a + b)+sc = remainder r' when(a + b) + c is divided by '5’
= remainder r' when a + (b + c) is divided by '5'
= a+s(b +c)
= a+s(b+sc)

& (+5b) +5¢c = a+s5(b+s0)

(iii) Existence of identity: From C. T we observe that the row headed by 0 is coincide with the

toprow of C.T. . 0is the identity elementingG.

(iv) Existence of inverse: From C.T we observe that the identity elements 0 contains in each
row.
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The inverse of 0,1,2,3,4 are 0,4,3,2,1 respectively.
=~ Each element in G has additive inverse Th(G,+s ) is a group

(v) commutative property: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G, +5) is an abelian group of order 5

2. P.T theset G = {1,, 3,4} is an abelian group of order ‘4> w.r.t. multiplication modulo’5’

Sol: Given G = {1,2,3,4} under ' Xs5'

Xsg 1 2 3 4
Construct a composition table for G

1 1 2 3 4
(i) Closure property: we observe that all
elements in C.T are the elements of ¢ 2 2 4 1 3
" X5 'is binary on G 3 3 1 4 2
(1) Associative property: Let a,b,c € G 4 4 3 2 1

Now ( X5 b) X5 ¢ = (ab) X5 ¢ = remainder r' when(ab)c is divided by '5’
= remainder r when (bc) is divided by '5’
= a X5 (bc)
=a Xs (b X5 ¢)

o ( Xsb) Xsc=axXs(bXsc)

(iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the
toprow of C.T. .~ 1isthe identity element inG.

(iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each
row.

The inverse of 1,2,3,4 are 1,3,2,4 respectively.
~ Each element in G has additive inverse Th(G,Xs ) is a group

(v) commutative property: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G,Xs) is an abelian group of order 4
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3. P.Ttheset G = {1,,5,7} is an abelian group of order ‘4> w.r.t. multiplication modulo’8’

Sol: Given G = {1,3,5,7} under ' Xg'

Xg 1 3 5 7
Construct a composition table for G

1 1 3 5 7
(i) Closure property: we observe that all
elements in C.T are the elements of G 3 3 1 l °
" Xg'is binary on G 5 5 / 1 3
(1) Associative property: Let a,b,c € G ! ! > 3 1

Now ( Xgb) Xg ¢ = (ab) Xg ¢ = remainder r' when(ab)c is divided by '8’
= remainder r' when (bc) is divided by '8’
= a Xg (bc)
=a Xg (b Xg )

o~ ( Xghb) Xgc =axXg(bXgc)

(iii) Existence of identity: From C.T we observe that the row headed by 1 is coincide with the
toprow of C.T. - 1is the identity element inG.

(iv) Existence of inverse: From C.T we observe that the identity elements 1 contains in each
row.

The inverse of 1,3,5,7 arel,3,5,7 respectively.

~ Each element in G has additive inverse Th(G,Xg ) is a group

(v) commutative property: From C.T we observe that all the rows identical with their
corresponding columns. Hence (G,Xg) is an abelian group of order 4

Order of an element: Let (G, -) be a group and a € G then there exist a least positive integer
‘n’ such that a™=e. then n is said to be order of ‘a ‘and it is denoted by 0(a). In case such a
positive integer does not exist then we say that 0(a) is zero (or) infinite.

Note: (i) We have el = e = (e) =1
= The orer of identity element is 1

(ii) In additionwe have na =0 = (a) =n




Ex: 1. Find the order of each element in a group ¢ = {1, —1} under multiplication.
Sol: G = {1,—1} is group under multiplication. Here e = 1
Leta=1 now(1)'=1,(1)*=1,1)3=1 ~0o(1) =1
Leta=—-1 now (-1 =-1,(-1)?=1,(-1)3=-1 ~o(-1) =2
~(D=1-1)=2
2. Find the order of each element in a group G = {1, w, } under multiplication
Sol: G ={1,,2%} is group under multiplication. Here e = 1
Leta=1 now(1)'=1,(1)?=1,(1)3*=1 ~o(1) =1
Leta=w now (0)! =w,(w)?=w? (W3 =w3=1 ~o(w) =3
Let a = w? now (w?)! = w? (w?)? =w, (W3 =w®=1 ~ (w?)=3
~(1)=1,(w) =3,0(w?) =3
3. Find the order of each element in a group G = {1, —1,, —i} under multiplication
Sol: 6 ={1,—-1,,—i}is group under multiplication. Here e = 1
Leta=1 now(D)'=1,(1)?=1,(1)3=1 ~o(1) =1
Leta=-1 now(—1)'=-1,(-1)?=1,(-1)3=-1 ~o(-1) =2
Leta=inow (D)'=i,({)?>=-1, ()3=—i, (D)*=1~0@()=4
Leta = —inow (=)' = —i,(=i)?=—-1, (-)3 =i, (-)*=1~0(-i) =4
(M) =1,(-1) =2,0() = 4,0(—i) = 4

4. Find the order of each element in a group ¢ = Z¢ = {0, 1,, 3,4, 5} under addition
modulo 6

Sol: G =Z¢=1{0,1,2,3,4,5} is a group under addition modulo 6 Here e = 0
Leta=0now1l.(0)=0, 2.(0)=0, 3.(0)=0s00(0) =1

Leta =1now 1+41+¢1+¢1+61+61 = 6.(1) = 0, 12(1)=0,..s00(1)=6
Leta = 2now 2+42+¢2 =3.(2) =0, 6(2)=0,..s00(2)=3

Leta =3now3+43=2.(3)=0, 4(3)=0,..s003)=2
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Leta = 4 now 4+¢4+¢4 = 3.(4) = 0, 6(4)=0,..s00(4)=3

Let a = 5now 5+45+¢5+¢5+65+65 = 6.(5) = 0, 12(5)=0,..s00(5)=6
~0(0)=1,001)=6,0(2) =3,03)=2,04)=3,0(5)=6

5.Inagr(G,),if a,b € G theno(a) =5,b # e and aba™! = b? find o(b)?
Sol: Given (a) =5 = a®> = e and aba™' = b?

Now (aba™1)? = (aba)(aba™') = ab?a™! = a(aba )a™! = a?ba™?

~ (aba™1)? = a’ba?

= [(aba™1)?]? = (a’ba™?)? = (aba™1)* = a’b%?a™? = a?(abaY)a? = a3ba™3
s (aba™H)* = a®ba=3 = (aba™1)® = a*ba*

= (aba )% = a°ba™> = (b?)1® = ebe ! = b3? = b = b3! = e = (b)|31
since 31 is a prime so (b) = 1 or 31

If (b) =1then b = e which is contradictto b # e -~ (b) =31

6. If every element of a group G except the identity is of order 2 then prove that Gis an
abelian.

Proof: Let (G,-) be group and 'e'be the identity element of G
We have (e) = 1 alsoe? =e
Leta # e
since the order of the elementa #eis2 = (a)=2=a’=e=a=a!
Leta, b€ G=ab€G = (ab)?=¢e
= ab = (ab)™*
=ab=b"tla! =ba

~ab = ba = (G,") is an abelian group.
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Theorem1: The order of every element of a finite group (G,") is also finite
and is always less than or equal to order of G

Proof: (G,") be a group and 'a’be any element of G.

By binary operation the set ofall positive integral power of a are a',?,a® .....€ G
are all cannot be distinct (since G is finite group)

Leta” = a®* wherer,s € Nandr > s

= aas=a’a*=a" =a"=e=>am=e wherem=r—s>0

s mis a positive integer such that a™ = e

By well ordering principal "Every positive integer set has a least member"

Thus the set ofall those positive integer m such that a™ = e has least number say 'n’
~' n'is a least positive integer such that a® = e = o(a) =n i.e.finite

Next to prove that o(a) < o(G)

Leto(a) = p = pis a leat positive integer such that ap? = e

If possible suppose that o(a) > o(G)

By binary operation the set ofall positive integral power of a are a',?,a® ....aP € G
The set of all these elements are distinct

Leta” =a®* wherel <r<p l1<s<pandr >s

=ada*=aa*=>a  =a’=e=>((a)=r—-s (m1<r—-s<p-1<p)
which is a contradict to o(a) = p. Hence a” # a*

~at,a? ad....aP € Gare all distinct

since o(a) > o(G) = p > o(G)which is not possible

Hence o(a) < o(G)

Theorem2: Ina gr(G,),if a € G theno(a) = o(a™?)

Proof: Let (a) = n = n s a least positive integer such that a™ = e

Let (a™') = m = m s a least positive integer such that (a™1) = e
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To prove that (a)= (a ) ien=mm<mandm<n)

sincea"=e= (a") l=el=>@@H"=e=o0(@H)<n=>m<n-~1)
also(@) =e=am=e=((@ ™) l=el=a"=e=o0@<m=>n<m-(2)
From (1) Q) n=mi.e.(a)=o(a™)

Theorem3: Ina gr(G,),if a € G theno(a) = nthena™ = e < n|m

Necessary condition (=): Given that (a) =n =n
is a least positive integer such that a™ = e

By division algorithmm,(# 0) € Zso 3 q,r € Z suchthat m = nq +r where0 <r <n
sinceam=e=a""" =e = a"a" =e = (a")%" =e = (e)la" =e=a" =e

= r is a least positive integer suchthat a” = e where 0 < r<n

If 0 < r <nthenitis contradict to (a) = .Hencer =0

~m=nq+0=nlm

Sufficient condition (&): conversely given that (a) = n such that n|m

To prove thata™ = e

since o(a) = n = n is a least positive integer such that a™ = e

since n|m by definition so 3 a positive integer p such that m = np

Nowa™ =a™ = (a")P =eP =e

~am=e




39

UNIT-2: SUB GROUPS
Complex: Any subset of a group G is called as a complex.
Ex (i) Theset A = {1,—1} isacomplex of group G = {1,—1,i,—i} under multiplication
(i) The set of integers is a complex of a group (Q,+)

Multiplication of a complex: Let M, N be the complex of a group (G,") then MN = {mn / m €
M,n € N} is called as multiplication of complex.

Inverse of complex: Let M be the complex of a group (G,") then M=t ={m~1 € G/m € M} is
called as the inverse of element of M

Sub group: A non empty subset H is said to be a subgroup of a group (G,-) if H itself is a group
under the same operation of G

Ex: The set of integers is a subgroup of (Q, +) i.e. (Z, +) is a sub group of (Q, +)

Note: 1. Every group contains at least two sub groups. Theyare H = {e} and H = G are the
subgroup of G itself. These two subgroups are called improper/trivial subgroups of G. If any
other subgroups exist then it is called proper/non trivial subgroups.

Ex: 1. Find all subgroups of a group G = {1, —1, i, —i} under multiplication.

Sol: Given G = {1,—1, i, —i} is group under multiplication.

1 -1
H, = {1} and H, = G are trivial subgroups of G 1 1 1
Clearly H; = {1,—1} is also a group.
-1 -1 1
Hence Hsis a non-trivial subgroup of G
2 Find all subgroups of a group Z¢ = {0, 1,, 3,4, 5} under addition.
Sol: Given Z¢ = {0,1,2,3,4,5} is a group under FoT 0 3 T 0 5 7
+6
- 0 0 3 0 0 2 !
H1 = {0} and H, = G are trivial subgroups of G
. 3 3 0 2 2 4 0
Clearly H; = {0,2,4} is also a group.
. 4 4 0 2
Clearly H, = {0,3,} is also a group

Hence Hsz, 4 is a non-trivial subgroup of G
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Theoreml: The identity of a subgroup H of a group (G,-) is same as the identity element of
G

Proof: Let a € H and e be the identity element of H.

Since H is a subgroup of G = (H,") isa group . ael=a - (1)

Sincea € H= a € G (H € G) and e is the identity element of G - ae =a — (2)
Sinceel € H =>e' € G From (1) (2) ael =ae= el =e¢

Theorem2: The inverse of any element of a subgroup H of a group (G,-) is same as the
inverse element in a group G

Proof: Let a € H and e be the identity element of G.

Since His a subgroup of G = (H,") isa group sinccea€ H=a €G (~ HCG)

Let'b’ be the inverse of 'a = ab =e — (1)

Let'c’ be the inverse of 'a = ac =e - (2)

From (1) (2) ab=ac=b=c

Theorem3: If H is a subgroup of a group G then H™! = H

Proof: Given that H is a subgroup of a group G

Toprovethat H-'! = H(" 'S Hand H € H™)

Leth™* € H"! = h € H since H is a subgroupand h€ H= h ' € H

~hleH'=h'leH=H1CH-()

Leth € H,ce H is a subgroup = h'€H = (h"1)"'eH ! = heH!

~heEH=heH'=HCcCH!-(2)

From (1) (2) H'=H

The converse of above theorem need not be truei.e.H is a complex of G such that
H~1 = H then H need not be a subgroup.

Consider G = {1,—1,i,—i} and H = {—1}
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Clearly H is non — empty subset of G.
H'={-D"}={-1}=H
But (—1)(—1) = 1 € H = binary operation fails. Hence H is not a group
Thus H is not a subgroup of G.
Theorem4: If H is a subgroup of a group G then HH = H
Proof: Given that H is a subgroup of a group G
To provethat HH = H (.e.HH € H and H € HH)
Let x € HH then x = h,h, where h, € H,h,€ H
Since H is a subgroup of G By closure property hy € Hh,€ H = hih, € H = x €H
~“X€EHH =>xe€H=HHCH - (1)
Leths; € H, e is the identity element in H -. h; = hze € HH = h3; € HH
~h3; €EH = hz; € HH = H € HH - (2)
From (1) (2) HH = H
The converse of above theorem need not be truei.e.H is a complex of G such that
HH = H then H need not be a subgroup.
Consider G = {2"/n € Z} is a group
and H = {1,2%,22,23, ...}
Clearly H is non — empty subset of G.

HH = {h1h;/hi € H,h, € H} = {1,21,2%,23,...} = H
But2 € Hso13 ) & H > 2. (2) = 1 = inverse fails.Hence H is not a group

Thus H is not a subgroup of G.
Theorem5: A non-empty subset H of a group G is a subgroup of G
< (i)aeHbeH—=abeH(iilaeH=aleH

Necessary condition (=): Given that H is a subgroup of G.
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To proveth(i)a€ HLb€ H= ab €H (ii)ae H=a'€eH

Since H is a subgroup of G = (H,") is a group

By closure property:a € H b€ H= ab € H

By inverse property:a € H = a ' € H

Sufficient condition (&): Conversely given that H is a non — empty subset of G
suchth(i)a€e HHbe H=ab€H (ii)aeH=aleH

To prove that H is a subgroup of G

(i))By(i)a€ H,b € H= ab € H - closure property holds in H

(ii)Since all elements of H are the elements of G (H € G).We know that
multiplication is associative in G and hence multiplication is associative in H.
(iii) SinceH + ¢ Leta € H

Leta€e Ha€eH (ia'eH

~a€HaleH ()aa'eH—=e€H

(iv)By (ii)aeH =a'€eH

~ (H,") is a group

Hence H is a subgroup of G

Theorem6: A non-empty subset H of a group G is a subgroup of G

< (i)a€H,be H= ab ! € H where b~! is the inverse of bin G
Necessary condition (=): Given that H is a subgroup of G.

Toproveth(i)a€e HHb€ H= ab ' € H

Since H is a subgroup of G = (H,") is a group

Leta € H b €EH, His asubgroupof G = a€H, " '€eH=ab '€H
Sufficient condition (&): Conversely given that H is a non — empty subset of G
suchth(i)a€e HHbe H=ab '€ H

To prove that H is a subgroup of G




(i) SinceH +#+ ¢ Leta€e H

Leta € H,a € H By Hypothesis aa ! € H = e € H

~ e is the identity element in H

(ii) Sincee€e Hha€ H byHyp ea* € H = a ' €H
~a€H=a'l€eH

(ii)Letae H,be H =a€ ,b-' € HByHyp a(b™')"'€eH=ab€eH
~ Closure property holds in H

(ii) Since all elements of H are the elements of G (H € G).We know that

multiplication is associative in G and hence multiplication is associative in H.

~ (H,") is a group

Hence H is a subgroup of G

Theorem7: A non-empty subset H of a group G is a subgroup of G & HH™1 € H
Necessary condition (=): Given that H is a subgroup of G.

To prove that HH™' € H

Letx e HH 1= x =ab Ywherea€ H b~ €e H'sinceae Hbe H

Since H is a subgroupof Gsoa € H, e H=ab '€ H = x€H

~X€EHH! =>x€H = HH'CH

Sufficient condition (): Conversely given that H is a non — empty subset of G
suchthat HH™' € H

To prove that H is a subgroup of G

(i) SinceH # ¢ Leta€eH

Leta€e HbeEH =a€H,b1leH ! =agb'eHH '=ab'€eH sinceHH'CH

~a€HbeEH=ableH

Hence H is a subgroup of G
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Theorem8: A non-empty subset H of a group G is a subgroup of G & HH ! = H
Necessary condition (=): Given that H is a subgroup of G.

To provethat HH™ ' =Hi.e.( "' €H and H< HH™ 1)

Letx e HH 1= x =ab 'wherea€ H b1 € H lsincea€ H beH

Since H is a subgroupof Gsoa € H, €EH =ab ' €H = x€H

~“x€EHH! =>x€e€H = HH'CH - (1)

Lety€e H=y=ab wherea€ Hb€H

Since H is a subgroup of Gsoy € H

Since a € H, € H,since H is a subgroup of G = ab™' € H

According to definition of complex a € H, e H,= a € H,b~' € H™!

= ab '€ HH™!

~ab'eH = ab'eHH '=HC HH ' > (2)

From(1) and (2) HH ' = H

Sufficient condition (<): Conversely given that H is a non — empty subset of G
suchthat HH-' = H(HH ' € H and H € HH™ ')

To prove that H is a subgroup of G

(i)sinceH +# ¢ Leta € H

Leta€e HbeEH =a€H,bleH ! >agb 'eHH '=ab'€eH sinceHH 'CH
~a€HbeH=ableH

Hence H is a subgroup of G

Theorem9: A non-empty finite subset H of a group G is a subgroup of G

< (i)aeHbeH—=abeH

Necessary condition (=): Given that H is a subgroup of G.

To prove that(i)a € H b € H = ab € H

Since H is a subgroup of G = (H,") is a group
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By closure property: a€ H b€ H = ab € H

Sufficient condition (): Conversely given that H is a finite subset of G
suchthat(i)a € Hb € H = ab €H

To prove that H is a subgroup of G

(i)ByHypa € Hb € H=ab €H

(ii) Since all elements of H are the elements of G (H € G).We know that

multiplication is associative in G and hence multiplication is associative in H.

(iti) Since H # ¢, Leta € H

ByHypa€ Ha€H = a’*€H

Againa? € ,a€ HByHypa3® € H

Alsoa® € , e HByHypa* € H

By induction we prove that a™ € H where n is a positive integer

The set of all positive integral powers of 'a’are at,a?,3,a*, ...a™ a™",...€ H
Since H is a finite so the set of all these elements a',?,a3,a*, ...a™ a™,...€ H
can not be distinct.

Leta” = a® wherer >sandr,s € N

=a " S=a’=e since r>s =r—s>0=r —sisapositive integer.
~a*eH=e€H

(iv)Sincer>s =2r—-s>0=r—-s—-1>0~a"51eH

Leta € H

Nowa.a"*1=a"5=a=e

~ a5 1is the iverse of 'a

Each element in H has multiplicative inverse.

Hence (H,")is a group

45




Theorem10: A non-empty subset H of a finite group G is a subgroup of G

< (i)aeHbeH=abeH

Necessary condition (=): Given that H is a subgroup of a finite groupG.

To prove that(i)a € HLb € H=ab € H

Since H is a subgroup of G = (H,") is a group

By closure property: a € H,b € H,= ab € H

Sufficient condition (&): Conversely given that H is a non — empty subset of a
finite group G such that(i)a € Hb € H = ab € H

To prove that H is a subgroup of G

(i) ByHypa € Hbe H=ab €H

(ii) Since all elements of H are the elements of G (H € G).We know that

multiplication is associative in G and hence multiplication is associative in H.

(iii) Since H + ¢,Leta € H

ByHypa€ Ha€H = a*€H

Againa® € ,a€ HByHypa® € H

Alsoa® € , e HByHypa* € H

By induction we prove that a™ € H where n is a positive integer
sincea € H=>a€G

We know that the order of every element of a finite group G is also finite.
It follows that order of a'ben i.e.o(a) =n=a"=e

where n is a least positive integer

~a"€H = e €H - eistheidentity element.

(iv) sincen>0=>n—-1>0=a"'€H

Leta € H,

Nowa.a" 1l =ag"=e
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~a™ s the iverse of 'a

Each element in H has multiplicative inverse .

Hence (H,")is a group

Theoremll: If H, are two subgroups of a groupG then HK is a subgroup of G
< HK = KH

Necessary condition (=): Given that H, are two subgroups of a group G such that HK
is a subgroup of G.

To prove that HK = KH

since HK is a subgroup of G = (HK)™! = HK (+H<G= H'=H)
= K-1H"! = HK (vK<G=K"'1=K)
= KH = HK
~ HK = KH

Sufficient condition (&): Conversely given that H, K are two subgroups of
a group G such that HK = KH
To prove that HK is a sbgroup of G.For this we have to show that (HK)(HK)™! = HK
Now (HK)(HK) ! = HK(K~'H™1)
= [(HK)']H™!
= [(KK~D]™!
= (HK)™! (“K<G=KK'1=K)
= (KH)! (+ HK = KH)
= (HH™)
= KH (v“H<G= HH™! =H)
= HK
« (HK)(HK)™! = HK

~ HK is a sbgroup of G




Theorem12: The intersection of two subgroups of a group G is also a subgroup of G
Proof: Let H,K are two subgroups of a group G

To prove that H N K is a subgroup of G

(i)since H,K are two subgroups of G

~e€EHande€e K =e€HNK = HNK #0

(i) ClearlyHNK <G (+H<SG,K<G)

(iii) Leta,be HNK = a,b€ Hand a,b € K

Since a,b € H,H is a subgroup of G = ab ' € H

also since a,b € K,K is a subgroup of G = ab™' € K

~ab'€Handab ' €K =ab'€eHNK

~ HNKisasubgroupof G

The union of two subgroups of a group G need not be a subgroup of G

Ex: G = (Z, +) be a group under addition.

LetH ={....—6,—4,—2,0,2,4,6, ...}

and K ={....—9,—6,-3,0,3,6,9, ... } be two subgroups.

HUK ={..—9,—-6,—4,-3,-2,0,2,3,4,6,9, .... }
Let34€HUK=3+4=7¢ HUK =+ isnot abinary operationon H U K

~ HU K is not subgroup of G
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LetH ={....—6,—4,—2,0,2,4,6,...}and K ={....,—8,—4,,0 ,4,8,, ... } be two subgroups.

HUK ={..—8,-6,—-4,-2,,0,2,4,6,8, ...}
Let2,4€e HUK = 2+4=6€ HUK ~ HUK is asubgroup of G

Note: K € H then HU K is a subgroup of G




Theorem13: The union of two subgroups of a group G is a subgroup of G < one is
contained in other. (OR)

Let H,K are two subgroups of a group G then HU K is a subgroup of ¢ <
H<S KorKcH.
Necessary condition (=): Let H, K are two subgroups of a group of G such that
H UK is asubgroup of G
Toprovethat H S KorK € H
If possible supposethat HZ Kand K € H
Since H € K = so 3 atleast one elementa € H buta € K
also K € H = so 3 atleast one element b € K butb € H
~a,beEHUK (+HCSHUK, K<€ HUK)
= ab€HUK (~ HUKis asubgroup) =ab € Horab€ Korab€e HNK
If ab € H :
Sinceab € H, € H, His a sub group = a '€ H
a"!€H,ab €EH, His a subgroup of G = a '(ab)€EH = b € H
which is a contradicttob € H . ab € H
If ab € K :
since ab € K, b € K,K is a sub group = b~ ' €K
ab € K,b~' €K, Kisasubgroupof G = (ab) "' €K = a €K
which is a contradicttoa € K - ab € K
~ab¢& Hand ab € K = ab € H N K which is a contradicttoab € HNK
Hence our supposition is wrong
ThusH < KorK € H
Sufficient condition (): Conversely given that H, K are subgroups of G such that

HESKorKc€ H
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To prove that HU K is a subgroup of G
SinceH € K = HUK = K since K is a subgroup
= H UK is a subgroup of G
Also K€ H=HUK=H
Since H is a subgroup = H U K is a subgroup of G
Ex: 1. Let H be a subgroup of G and Let T = {x € G/xH = Hx}
show that T is a subgroup of G
Proof: T = {x € G/xH = Hx}
To prove that Tis a subgroup of G
(i) since e € G, we have eH = He
~e€T=T=+0Q
(ii) clearly T < G (by defof T)
(iii) Let x,y € T then xH = xH and Hy = yH
To prove that xy~! € T For this we have to show that (xy™!) = (xy™1)
First we prove thaty ' € T
since Hy = yH
=y 'Hy)y " =y )y
=y yy™) =@ yHy!
=y lH=Hy !
=y leT
Now (xy~1) = (Hx)™ !
= (xH)™!
= (Hy™)
=y 'H)

= (xy™)
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sy D) =@y H)=>xyteT
~ Tis a subgroup of G
2.If His a subgroup of a group Gand if g € Gand gHg™ ! = {ghg~'/h € H}
then prove that gHg ! is asubgroup of G.
proof:Given H is a subgroup of a group G and gHg™' = {ghg~'/h € H}
To prove that gHg ' is a subgroup of G
(i) sincee € H, we have geg ' € gHg ' = gHg™' # ¢
(ii) clearly gHg=* € H (by def of gHg™1)
(iii) Let x,y e gHg ' thenx = gh,g™, y = gh,g~1 whereh ,h, € H
To prove that xy™' € gHg ™!
Now xy~' = (gh1ig™)(gh2g™")™"
= (ghig D (gh"'g™)
= ghi(g7*g)hy g~}
= ghih, ' g™t
= (hih;™H)™
= gHg™! (+ hihy ' € H)
2 xy~1 € gHg™?

s~ gHg™'is asubgroup of G
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CO-SETS & LAGRANGE’S THEOREM

Co-set (def): Let (H,") be a subgroup of (G,-) and a € G then the set Ha = {ha/h € H} is
called as right co-set of H in G generated by 'a’ and the set aH = {a h/h € H} is called as left
co-set of H in G generated by 'a’ and it is called as co-set of H in G generated by ‘a’.

Note:

1.For addition, we have H + a = {h + a/h € H} is called as right co-set of H in G generated
by'a’" andtheseta+ H = {a + h/h € H} is called as left co-set of H in G generated by 'a’
and it is called as co-set of H in G generated by ‘a’.

2. Ife is the identity element of G and H < G then eH = {eh/h € H} = {h/h € H} = H And
He = {he/h e H} ={h/h € H} = H

3. Everysubgroup H of G itself is a left and right co-setsof H in G
Ex: 1. Find the distinct right or left co-sets of H = {0,,4} in Z; under +4
Sol: Zs = {0,1,2,3,4,5}, under +¢4 is a group and H = {0,2,4}

Clearly H is a subgroup of G sincea=0€ ,H = {0,2,4}

()H +0 ={h+s0/h € H} ={0,2,4} = H (i)H+1 = {h+s1/h € H} = {1,3,5}
(ii)H + 2 = {h+62/h € H} = {2,4,0} (iv)H + 3 = {h+43/h € H} = {3,5,1}
(vV)H+ 4 ={h+¢4/h € H} = {4,0,2} (wi)H + 5 ={h+¢5/h € H} = {5,3,1}

~ H+0, H + 1 are distinct right/left cosets of Hin G

2. Find the distinct right or left co-sets of H = {1,4} Z5; under Xj

Sol: Zs = {1,2,3,4}, under X5 is a group and H = {1,4}

Clearly H is a subgroup of G sincea=1€ ,H = {1,4}
(DH1={hx51/heH}={1,4}=H (ii)H2 = {h X5 2/h € H} = {2,3}
(iii)H3 = {h x5 3/h € H} = {3,2} (iv)H4 = {h X5 4/h € H} = {4,1}

~ H1, H2 are distinct right/left cosets of Hin G

o(G)

Note: 1.The number of distinct right or left cosets of Hin G = o

2.Every right or left cosets of H in G have the same number of elements.i.e (Ha)
= (HD)
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3.G =HaUHD

Theoreml: Let Hbe a subgroup of Gand h € G thenh € H < Hh = H = hH
Necessary condition (=): Given that H is a subgroup of G and h € G such that h € H
To prove that Hh =H =hH (Hh S H,H S Hh)

Let x € Hh thenx = hih whereh, € H

since hy € H, heH, His a subgroup ofG = hih€e H= x€H

~Hh S H- (1)

Let h, € H and e be the identity element in G

Since H is a subgroup of G soe € H

Now h, = hye = hy(h™*h) = (h,h ' )he Hh (~ h, € HHh ' € H,H < G so h,h™! € H)
~HC Hh - (2)

From (1) (2) Hh=H

Next to prove that hH =H (hH € H ,H S hH)

Lety € hH theny = hhy; where h; € H

since hz € H, he€eH, His a subgroup ofG = hh3;€ H = y € H

~hH S H - (3)

Let hy € H and e be the identity element in G

since H is a subgroup of G soe € H

Now h,= eh,= (hh")h,=h(h™*h,)ehH (~h'€Hhy,€HH<GSsoh'h, €H)
~HCS hH - (4)

From (3) (4) hH=H

Sufficient condition (): Conversely given that H is a subgroup of G and

h € G such that Hh = H = hH

To prove that h € H

Let e be the identity element in G




since H is a subgroup of G soe € H
Nowh=he € hH = he€ehH = h€H (wH=hH)
Next h=eh€ Hh=H = h€H
Theorem2: If a and b are two elements of a group G and H is a subgroup of G
then (i)Ha = Hb < ab ' € H (ii)aH =bH < a'beH
() N.C (=):Given that H is a sub group of G such that Ha = Hb
To prove thatab™ € H
Let e be the identity element of G since H < Gsoe € H
Now Ha = Hb = Hab~! = Hbb~!

= Hab ' =He =H

= Hab ' =H

=ab l€eH (“H< G Hh=H < heH)
S.C (&): Conversely given that H is a subgroup of G such thatab™' € H
To prove that Ha = Hb
sinceab™ € H = Hab ' = H

= Hab™'b = Hb
= Ha = Hb

(1) N.C (=): Given that H is a subgroup of G such that aH = bH
To prove thata ‘b € H
Let e be the identity element of G since H< Gsoe € H
Now aH = bH = a~'aH = a='bH

= H =a 'bH

= a 'bH = H

=albeH (“H<G,hH=H S heH)

S.C (&): Conversely given that H is a subgroup of G such thata™'b € H
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To prove that aH = bH
sincea™'b € H = a 'bH = H
= aa"'bH = aH
= bH = aH

Theorem3: If a and b are two elements of a group G and H is a subgroup of G
then (i)a € Hb < Ha = Hb (ii)a € bH < aH = bH
(i) N.C (=):Given that H is a subgroup of G such that a € Hb
To prove that Ha = Hb
since a € Hb = ab™! € Hbb™!

= ab~! € He

=ab '€H (“H< G Hh=H<© h€H)

= Ha = Hb
S.C (&=): Conversely given that H is a subgroup of G such that Ha = Hb
To prove that a € Hb
Lete € G,sinceH< G . .e€H
Now a = ea € Ha
= a € Ha
= a € Hb (~ Ha = Hb)
(1) N.C (=): Given that H is a subgroup of G such that a € bH
To prove that aH = bH
sincea € bH = b~'a € b~'bH

= b la€eH

= b la€eH (+WH<GhH=H&< heH)

= aH = bH

S.C («): Conversely given that H is a subgroup of G such that aH = bH




To prove that a € bH
Lete € G,sinceH< G ~e€H
Now a = ae € aH
= a €al
= a € bH (~ aH = bH)
Theorem4: Let H be a subgroup of G then there exist a bijection between
any two left or right cosets of Hin G (OR)
Let H be a subgroup of G then there exist one — one correspondance between
any two left or right coset of H in G.
Proof: Let H be a subgroup .For anya,b € G.
Let aH, bH be two left cosets of Hin G
Define a mapping f:aH — bH by f(ah) = bh Vah € aH
(i)f is one — one and well — define: Let ahq, ah, € aH such that (ah,) = (ah,)
To prove that ah,= ah,
since (ahy) = (ah,) < bh,= bh,
S hy=h,
< ah,= ah,
~ f is one — one and well — defined
(ii) f is on — to: Let bh € bH then h € H
For this h € H,we have ah € aH = f(ah) = bh
.~ Vbh € bH so 3 ah € aH such that f(ah) = bh
~ fison—to
Thus f is bijective.
Theorem5: Let H be a subgroup of Gthen there is one — one correspondance

between the set of all distinct left cosets of H in G and the set of all distinct
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right cosets of H in G.
Proof: Let H be a subgroup of G.For any a,b € G.
Let Ha,Hb be two right cosets of Hin G
Let G, be the set of all distinct left cosetsof HinG.
Let G, be the set of all distinct rihgt cosets of HinG.
Define a mapping f: Gy » G, by (aH) = Ha™! VaH € G,
(i)f is one — one and well — define: Let aH, € G, such that (aH) = f(bH)
To prove that aH = bH
since (aH) = (bH) & Ha ' = Hb!
Salb)y'eH (“Ha=Hbsabl€eH)
S albeH
< a'bH =H
& aa 'bH = aH
< bH = aH
< aH = bH
~ fis one — one and well — defined
(ii) fison —to:Let Ha € Gythena € G = a '€ G = a 'H € G,
For thisa™*H € Gy = (a™'H) = (a™!)"! = Ha
~VHa€ Gysoda'HE Gysuchthat (a 'H) = Ha
s~ fison—to
Thus f is bijective.

Index of a subgroup of a finite group: -If H is a subgroup of a group G then the number of
distinct left/right co-sets of H in G is called as index of H in G and it is denoted by [ G: H] or

ic(H)

LAGRANGE’S THEOREM: The order of a subgroup of a finite group divides the order of
a group. (OR)
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If H is any subgroup of a finite group G then (H)|o(G).Is the converse true? justify
your answer?

Proof: Given that H is any subgroup of a finite group G

=~ H is also finite.

To prove that (H)|o(G)

IfH =G = (H) =(G) = (H)|o(G)

If H # G to prove that (H)|o(G)

Let (G)=nand (H) = m to prove that m|n

We know that every right/left co-set of H in G has the same number of elements and the number
of right co-sets of H in G is also finite and also H = He, H is also right co-set of H in G.

If Ha, Hb, Hc ... ... H are right co-sets of H in G (n terms) then (Ha) = (Hb) = (Hc) = -+ =
o(H)=m

Let the number of distinct right co-sets of H in G be k and all these right co-sets of H in G are
disjoint.

&~ G=HaUHbUHcU ..UH((ktimes)= o(G)=o(Ha) + o(Hb) + o(Hc) + --- + o(H)
=n=m+m+m+..+m( k times) >n=mk = k =

~m|n= o(H)|o(G)
Hence the order of a subgroup of a finite group divides the order of a group

The converse of this theorem need not be true i.e. if G is a finite group and (H)|o(G) then H
need not be a subgroup.

For example: Consider G = {1,—1,i,—i}so o(G) = 4-.
Let H = {i,—itheno(H) = 2

Clearly (H)|o(G) (2]4)

But Hisnotagroupas (i)=—-1¢ H

~ Hisnot a subgroup of G

Theorem?7: If G is a finite group and a € G then (a)|o(G)




Proof: G is a finite group and a € G.

Leto(a) =n

we know that G is a finite group and a € G such that o(a) =n

then H = {e = a%1,a?, ...a™ '} form a group under multiplication.

Hence H is a subgroup of G suchthat o(H) = n

By Lagrange's theorem o(H)|0(G) = nlo(G) = o(a)|o(G)

Theorem8: If a is an element of a finite group G then (© = e (or)!¢ = e
(OR)

If G is a finite group of order nand if a € G thena™ = e (or)a'é' = e

Proof: Given G is a finite group of order ni.e.o(G) =n

Let o(a) = d = a® = e and since o(a) < 0o(G) (since G is finite)

we know that G is a finite group and a € G such that o(a) = d then

H ={e =a°a',a? ..71} form a group under multiplication.

Hence H is a subgroup of G suchthat o(H) = d

By Lagrange's theorem o(H)|0(G) = d|o(G) = d|n = n = kd forsomek € N

Now a™ = agk? = (a¥)k = ek =¢

~a*=e(or)altl =e

Theorem9: Every group of prime order has no proper subgroups.

Proof: Let G be a group such that (G) = p where p is aprime.

Let H be subgroup of G such that o(H) =m

By Lagranges theorem o(H)|o(G) = m|p

Sincepisaprimesom=1lorm=p

= H)=1or(H)=(G)= H={e}orH=G

These are improper or trivial subgroup.

i.e.G has only improper subgroups
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Thus G has no proper subgroups
Normalizer of an element: Let G be a group and a € G then the set of all elements in G
which are commutes with an element of 'a’in G and it is denoted by N(a)
i.e.N(a) ={x € G/ax = xa}
Centre of a group: Let G be a group and a € G then the set of all elementsin G
which are commutes with every element of G and it is denoted by C(G) or Z(G)
i.e.C(G)={x€G/ax =xa VYa € G}
Theorem 10: Let G be a group and a € G then (a)a subgroup of G
Proof: (a) = {x € G/ax = xa}
To prove that N(a) is a subgroup of G
(i) Since e € G, we have ae = ea
~e€N(a = N(a) #0
(ii) Clearly (a) € G (bydefof (a))
(iii) Let x,y € N(a) thenax = xa and ay = ya
To prove that xy~! € (a).
For this we have to show that (xy~1!) = (xy~1)
First we prove that y~! € (a)
since ay = ya

=y Hay)y ' =y ya)y™!

=y oy H=0"Yay™

=y la=ay!

=yl € (a)
Now (xy~1) = (ax)™!

= (xa)™

= (ay™")




= (y_la)
= (xy™)
Gy ) = () = xy € (@)

= N(a) is a subgroup of G
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UNIT-3: NORMAL SUBGROUPS

Normal subgroup (def): -A subgroup Hof a group is said to be a normal subgroup G if Vh €
Hand Vx € G = xhx~! € H. It is denoted by H = G we read it as H is a normal subgroup of G

Note: From the def of normal subgroup. We observe that
lHe> G & xHx ' CHVx€G (v xHx'={xhx'/h€ H)})
2He G x 'Hx CHVxeEG (vx€EG=x1€G, =G6)

3. Every group contains at least two normal subgroups {e} and G itself is called as improper or
trivial normal subgroups of G. If any other normal subgroups exist then it is called as proper or
non-trivial normal subgroups.

Theoreml: A subgroup H of group G is anormal subgroup of G <
xHx 1=HvVxeG
N.C (=): Given that H is a normal subgroup of G
To prove that xHx ' = HVx € G
Since H is normal subgroup of G = xHx~ ' C H, Vx €G- (1)
since xHx 1 C H, Vx €G

= x1(x"1)"1CH VxEG

= x 1Hx C H, Vx€G

= (x"'Hx)"' S xHx™', Vx€G

= ("HH(xx ') S xHx™', Vx €G

= H S xHx™ ', Vx € G - (2)
From (1) (2) xHx '=H Vx € G
S.C («): Conversely given that H is a subgroup of G suchthat xHx ' =H Vx € G
To prove that His a normal subgroup of G
sincexHx'=H Vx€G = x'Hx €H and H S xHx™! Vx€G

x 1Hx € ,Vx € G = H is a normal subgroup of G




Theorem2: A subgroup H of a group G is anormal subgroup of G <
each left cosetof HinG is aright cosetof Hin G
N.C (=): Given that H is a normal subgroup of G
To prove that each left coset of H in G is aright coset of Hin G
Since H is normal subgroup of G = xHx™! = H, Vx €G
= (xHx™Y) = Hx, Vx € G
= (xH)™'x = Hx, VX € G
= xH = Hx, Vx €EG
S.C (&=): Conversely given that H is a subgroup of G such that
each left coset of Hin G is aright coset of Hin G
To prove that His a normal subgroup of G
Let x € G thenxH = Hy for somey € H
sincee € H,so x = xe € xH
= x € xH
= x€Hy (~xH=Hy)
= xy~! € Hyy™!
= xy ' €H
= Hx = Hy
— Hx = xH
= Hxx ! =xHx™!
= H = xHx™!
= xHx 1=HVx€G

~ His a normal subgroup of G
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Theorem3: A subgroup H of a group G is anormal subgroup of G <
The product of two right cosets of Hin G is again aright coset of Hin G
N.C (=): Given that H is a normal subgroup of G
To prove that the product of two right cosets of H in G is again
aright cosetof HinG .
Forany a,b € G then Ha, Hb be two right cosets of H in G.
Now (Ha)(Hb) = H(aH)b
= H(Ha)b (vHe G < Ha=aH)
= HHab
= Hab (v H<GthenHH =H)
sincea € G,beG=ab eG
~ Hab is aright cosetof Hin G
S.C (&=): Conversely given that H is a subgroup of G such that the product of
two right cosets of Hin G is again a right coset of Hin G
To prove that H is a normal subgroup of G i.e.Vh € H,Vx € G = xhx ' € H
Lethe€Handx € G
Now xhx~!' = (hx )€ HxHx™!
= xhx~! € HxHx™!
= xhx ! € Hxx™! (~ Ha-Hb = Hab)
= xhx~! € He
= xhx ' eH
~VheHVxeEG=xhx1eH

Thus H is a normal subgroup of G
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Theorem4: Every subgroup of an abelian is always normal subgroup

Proof: Let G be an abelian group and H be a subgroup

To prove that H is a normal subgroup of G (i.e.vh € H,Vx € G = xhx~! € H)

Lethe€H, and x € G

xhx'=(x"1h) (+x€G=x1€GheEH=heG= h'x =x"1h,G is abelian)
= (xx YHh
= eh
=h€H
~xhx ' €H -~ Hisanormal subgroup of G
Theorem5: The intersection of any two normal subgroups of a group is a normal subgroup
(OR)

Let H,K be two normal subgroups of a groupG then HN K is also normal

subgroup of G.

Proof: Let H, are two normal subgroups of a group G

To prove that H N K is a normal subgroup of G

(i)Since H,K are two subgroups of G

~e€EHandee€e K =e€HNK = HNK # ¢

(ii)ClearlyHNK <G (“H<SG,K SG)

(iii) Leta,be HNK = a,b € Hand a,b € K

Since a,b € H,H is a subgroup of G = ab™! € H

also since a,b € K,K is a subgroup of G = ab ! € K

~ab-'€Handab '€ K =ab ' €HNK

~ HNKisasubgroupof G

LetxeG,yeEHNK = y€eHandy€EK

sincex €G,y€E ,>G=xyx '€H
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Alsox €G,y€ ,>G=xyx €K
~xyx 'eHNK VxeG, VyeEHNK

~ HN K isanormal subgroup of G

Theorem6: Let N and M be normal subgroups of a groupG then NM is a normal
subgroup of G.
Proof: Since N is a normal subgroup of G, have Na = aN Va € G
In particular foranya € M, NM = MN and
hence NM is a subgroupof G (+H < G,K <G thenHK < G & HK = KH)
For any a € G,we have
(NM)a = N(Ma)

= N(aM) (* M is anormal)

= (Na)M

= (aN)M (* N is anormal)

=a(NM)
s~ (NM)a = a(NM) = NM is a normal subgroup of G

Theorem7: If G isagroup and H is a subgroup of index 2 in G then H is a normal
subgroup of G. (OR)

Let H be a subgroup of a group G such that there are exactly two left cosets of Hin G

then prove that every right coset of Hin G is a left coset and vice — versa
Proof: Given that H is a subgroup of index 2

= The number of distinct right or left cosets of Hin G is 2

To prove that H is a normal subgroup of G.

For this we have to show that xH = Hx Vx € G

Letx € G
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If x € HthenxH = Hx (H < G,h € H & hH = Hh = H)
~ His anormal subgroup of G
Ifx ¢ HthenxH + H+ Hx (h & H < hH # Hh + H)
Since indexof HinG is 2
~G=xHUH=HxUH
= There is no element in common Hx and H also xH and H
= We must have Hx = xH = H is a normal subgroup of G
Simple group: A group G is said to be simple if it has no proper normal subgroups.
Theorem8: Every group of prime order is simple
Proof: Let G be a group such that (G) = p where p is aprime.
Let H be subgroup of G such that o(H) =m
By Lagranges theorem o(H)|o(G) = m|p
Sincepisaprimesom=1lorm=p
= H)=1or(H)=(G)= H={e}orH=G
These are improper or trivial normal subgroup.
i.e.G has only improper normal subgroups
Thus G has no proper normal subgroups
Thus G is a simple group.
Centre of a group: Let G be a group and a € G then the set of all elementsin G
which are commutes with every element of G and it is denoted by C(G) or Z(G)
i.e.C(G)={x€G/ax =xa Va € G}
Theorem9: Let G be a group and a € G then (G) is a normal subgroup of G
Proof: (G) ={x € G/ax = xa Va € G}
To prove that C(G) is a normal subgroup of G

(i)Since e € G, we have ae = ea Ya el




ne€C(6)= CG)+# ¢
(ii)Clearly (G) < G (by defof (G))
(iii)Let x,y € C(G) then ax = xa and ay = ya
To prove that xy~! € (G)
For this we have to show that (xy™!) = (xy™1)
First we prove that y~! € (G)
since ay = ya
=y Ha)y =y yay™
=y 'y D) =0"yay™!
=y la=ay!
=y le(6)
Now (xy™1) = (ax)™?
= (xa)™*
= (ay™)
=0
= (xy™)
sy =Gy ) = xy € (6)
~ C(G) is a subgroup of G
Now we show that C(G) is a normal subgroup of G
Leta € G,x € C(G)
Now axa™! = (ax) ™ = (xa)a™! = x(aa ') = xe = x € C(G)
~axa™! € (G) = (G) is a normal subgroup of G

Theoreml0: Let H be a normal subgroup of G then the set % ={Ha/a € G}

is a group under coset multiplication




Proof: Given that H is a normal subgroup of G.

Fora € G,Ha = aH

The set% ={Ha/a € G] = The set of all cosetsof Hin G

Define a coset multiplication by Ha - Hb = Hab VYHa,Hb € %
To prove that = {Ha/a € G] is a group under coset multiplication.
(i)By closure property: Let Ha,Hb € u wherea,b € G

Now Ha - Hb = Hab €, (va,beEG=ab €EG)
-\ is a binary operation
(ii)Associative property:Let Ha, Hb, Hc € u
(Ha-Hb) - Hc = Hab - Hc
= H(ab - c)
= Ha - (bc)
= Ha - (Hbc)
= Ha - (Hb - Hc)
(iii)Identity property:We havee € G = He € u
Let Ha € i
Now He - Ha = Hea = Ha
also Ha - He = Hae = Ha

~ He is the identity element in u
(iv)Inverse property: Let Ha € %:> a€eG
=aleq

= Hale % Now Ha - Ha! = Haa™! = He
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~ Ha™'is the inverse of Ha

.G TP
=~ Every element in— has multiplicative inverse.

Hence % ={Ha/a € G}is a group under coset multiplication.
Quotient group or factor group: Let H be a normal subgroup of G then the
set = {Ha/a € G} is a group under coset multiplication is called as Quotient group .

Theorem1l1: Every quotient group of an abelian group is abelian.
Proof: Given that H is a normal subgroup of G.

Fora € G,Ha = aH
The set = {Ha/a € G| = The set of all cosets of Hin G
Define a coset multiplication by Ha - Hb = Hab VYHa,Hb € u
To prove that b= {Ha/a € G] is a group under coset multiplication.
(i)By closure property: Let Ha,Hb € u wherea,b € G
Now Ha - Hb = Hab €, (va,beEG= ab €eG)
.-" is a binary operation
(ii)Associative property:Let Ha, Hb,Hc € Y
(Ha - Hb) - Hc = Hab - Hc
= H(ab - c)
= Ha - (bc)
= Ha - (Hbc)
= Ha - (Hb - Hc)

(iii)Identity property:We havee € G = He € %

Let Ha EE
H




Now He - Ha = Hea = Ha

also Ha - He = Hae = Ha

~ He is the identity element in%
(iv)Inverse property: Let Ha € %ﬁ aeG
=aleq

= Ha ' € , Now Ha - Ha ! = Haa™! = He
~ Ha™'is the inverse of Ha

~ Every element in u has multiplicative inverse.

Hence = {Ha/a € G} is a group under coset multiplication.

(v)Commutative property: Let Ha,Hb € q

Now Ha - Hb = Hab
= Hba (~ Gisnabelian)
= Hb -Ha

= {Ha/a € G} is an abelian group
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UNIT-4: HOMOMORPHISM FOR GROUPS
Homomorphism: Let G, G! be two groups. A mapping f: G — G*

is said to be homomorphism if (a - b) = (a) - (b)

Homomorphic image set: If f: G —» G is a homomorphism then the image of G is called as
homomorphic image set. i.e. (G) = {(a) € G'/a € G}

Monomorphism: A homomorphism f: G — G1 is said to be monomorphism if f is one-one
mapping.

Epimorphism: A homomorphism f: G — G! is said to be Epimorphism if f is on-to mapping.

Isomorphism: A homomorphism f: G — G' is said to be isomorphism if f is one-one and on-to
mapping.

Endomorphism: If f: G - G is a homomorphism then f is called as endomorphism.
If f:G — G is an isomorphism then f is called as Automorphism.
Notations: If f: G —» G' is a homomorphism then G is the homomorphic image of G

(I.e. f is homo and onto) we write G! =~ G (i.e. G'is the homomorphic image of G)

If f:G — G is an isomorphism then G1 is the isomorphic image of G and G, G 'are isomorphic
images to each other. We write G = G

Theoreml: Letf: G > G' be a homomorphism then

(i)f(e) = el where e, e! are identity elements of G and G! respectively
() f(a™) =[f(a)]* Vae G

Proof:Given that f:G - G' is a homomorphism

(i)sincee € G,we havee-e =e

= fle-e)=f(e) (~ fismapping)

= f(e) - f(e)=f(e) (=~ fishomo)




= (e)-(e)=(e) e’ (~ f(e) EGLeteGl)
= (e)=e! (v Byl.c.l)
(ii)L,eta € G = a ! € G suchthataa™' =e=atla

~aal

=e
= (aa 1) = (e)
= (@@ H=e' by(Df(e) = e’
= (@) = @]
Theorem?2: The homomorphic image of a group is also a group.
(OR)
If £ is homomorphism from a group G into a group G* then ((G),") is a subgroup of G*
Proof: Given that f:G - G'is a homomorphism
(G) ={(a) € G'/a € G} = Homomorphic image set
To prove that (G) is group.For this we have to show that (G) is a subgroup of G!
since (i):G — Glis a homo,we have (e) = el
=el=(e) € (6)
=ele(G) = G)+¢
(ii) By the definition of (G) clearly (G) € G?
(iii) Let a',* € f(G) so 3 a,b € G such that f(a) = a', f(b) = b!
Now a* (b))~ = f(@)[f(B)]
= (@™
= (ab™)
= (ab™") € (G)
~al(b)™ € £(G)
=~ (G) is subgroup of G!

Hence f(G) is a group
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Theorem3: The homomorphic image of an abelian group is also an abelian group
Proof: Given that f:G - G'is a homomorphism
(G) ={(a) € G'/a € G} = Homomorphic image set
To prove that f(G) is an abelian group.
For this we have to show that (G) is a subgroup of G!
since (i):G — Glis a homo,we have (e) = e’
=el=(e) € (G)
=ele(G)= (G)+ ¢
(ii)By the definition of (G) clearly (G) € G*!
(iii) Let a’,* € f(G) so3 a,b € G such that f(a) = a', f(b) = b?
Now a' (b))~ = fF(@)[f(B)]™*
= (@) (™)
= (ab™1)
= (ab™") € (G)
~at(bh)™ e f(6)
= (G) is subgroup of G*
Hence f(G) is a group
(iv)Commutative property: Let a',* € f(G)so3 a,b € G such that f(a) = a', f(b) = b*
Now a' - bt = (a)(b)
= f(ab)
= f(ba) (~ G isanabelian)
= f(b)f(a)
— bl q!

= The homomorphic image of an abelian group is also an abelian group
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Kernel of a homomorphism: Let f: G - G* be a homomorphism then
G __f__ 6!
the set of elements in G which are mapped with the identity element of G?

is called as kernel of the homomorphism. It is denoted by Ker f ——— '."

Kerf = {x € G/(x) = el where e! is the identity element in G'}

Note: 1.p € kerf & (p) =e?
2.f:G > Glis a homo,we have (e) = el = e € kerf = kerf # ¢
3.By the defintion of kerf,arly kerf € G
Theorem4:If f: G — G! is homomorphism then kerf is a normal subgroup of G.
Proof:Given that f:G - G' is a homomorphism
Kerf = {x € G/(x) = e where e! is the identity element in G'}
To prove that kerf is a normal subgroup of G
(i)since f:G - G'is a homo,we have (e) = e! = e € kerf = kerf +# ¢
(ii). By the defintion of kerf,clearly kerf € G
(iii)Let a,b € kerf = (a) =el,(b) =e?
To prove that ab™! € kerf (i.e.(ab™') =el)
Now (ab™) = (a)(b™1)
= (@[f®)]™
= el(el)?
= el
~ab™! € kerf
(iv) Leta € G,x € kerf = (x) =e!
To prove that axa™! € kerf (i.e.(axa™!) = el)
Now (axa™) = (a)(x)f(a™)
= (@M@f (@]
= (@'[f(@]™!




= @[f(@]™
=el
s axa™! € kerf
~ kerf is anormal subgroup of G
Problems:
1. If G is a group of non — zeo real numbers under multiplication then prove that
¢:G - G where (x) = x? Vx € G is homo, determine kernel
sol: Given that ¢: G - G by (x) = x?> VX €G
Leta,b € G = (a) = a? and (b) = b? also ab € G = (ab) = a?b?
Now (ab) = a?b? = (a)(b)
~ ¢ is homomorphism
ker¢p = {x € G/(x) = e* where el is the identity element in G}
={x€eG/x*=1}
={x€eG/x=+1}
=~ kerg = {+1}

2.(Z,+)is agroup of integers.P.T f:7. = Z by (x) = 2x Vx €
Zis a homo and also find kerf?

Sol: Giventha f:Z - Z by (x) =2xVx €EZ
Letx,y€EZ=x+y €L
~(x)=2x, (y) =2y
(x+y)=2(x+y)
=2x+ 2y
=f)+f)
~ f is homomorphism

kerf = {x € G/(x) = e where el is the identity element in Z}
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={x €Z/2x =0}
={x €Z/x = 0}
=~ kerf = {0}

3. If G is a group under multiplication and ¢: G — G is defined by (x) =x~! Vx €G
then show that ¢ is not homomorphism.

Sol: Giventhat ¢:G - G by (x) =x"1 Vx€G

Letx,y€EG= (x)=xland (y) =y~! also xy € G = (xy) = (xy)~!

Now (xy) = (xy) ' =y~ 'x7!' = p(n)p(x) # p(x)p(¥)

~ ¢ is not a homomorphism

4.1f G is a group under additionand f:G — G is defined by (a) =a+2 Va€G
then show that ¢ is not homomorphism.

Sol: Giventhat f:G -> Gby(a)=a+2 Va€eaG

LetabeG= (a)=a+2and (b)=b+2 alsoa+beG=(a+b)=a+b+2
Now (a+b)=a+b+2

(@+MB)=a+2+b+2+(a+b)

=~ f is not a homomorphism

5. 1f f:G - G defined by (x) = where G is set of non — zero real numbers

{—1, x<O0

and G = {—1,1} are groups under multiplication.P.T f is homo and find kerf.

Sol: Given that f:G — Gdefined by (x) = {_1 X <0

Toprove that f is homo

Letx,y € G

c(DIfx>0,y>0=xy>0

xX)=1,p)=1land f(xy)=1landalso f(x)f(y)=11=1

~ fxy) = f(x)f(y) = f is homo
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c(iIfx <0,y <0=xy >0
(x) =-1,(y) =—-1land f(xy) = 1and also f(x)f(y) = (=D(=1) =1
~ flxy) = f(x)f(y) = f is homo
c(ii)Ifx <0,y >0=xy <0
x)=—1,()=1and f(xy)=—-1andalso f(x)f(y)=(-1)1 = -1
~ fxy) = fx)f(y) = f is homo
c(iv)ifx>0,y<0=xy <0
(x)=1,(y) = —1 and f(xy) = —1 and also f(x)f(y) = 1. (-1) = —1
~fxy) = f(x)f(y) = fis homo
In all above 4 cases (xy) = (x)(y) = f is homo
kerf = {x € G/(x) = e! where el is the identity element in G}
={xeR-{0}/f(x) =1}
= {x € R—{0}/x > 0}

s~ kerf = {R*}

6.If f:G - Gdefined by (x) = where G is set of non — zero real numbers

{—1, x>0
and {—1,1} are groups under multiplication. P.T f is homo and find kerf  Ans) {R~}
7.1f G is a group under multiplication and f: G — G is defined by (x) =x~! Vx €G
P.T f is one — one and on — to. Also prove that f is homo if f G is abelian.
Sol: Given f:G - G is defined by (x)=x"1 Vx €G
(i)fis one — one: Let x,y € G such that f(x) = f(y)
To provethatx =y
since (x)=(y)=>x1=y71!

=@ D) t=0""

=x=y




(ii)f is on — to:Let y € G (co —domain) 3 y~! € G (domain).
For thisy™! € G wehave (y )= (y D 1=y
~VyeGIyleGaly HD=y=fison—to
Next prove that f is homo if f G is abelian
N.C(=):Given that f is homo.
To prove that G is abelian (i.e.xy = yx Vx,y € G)
Letx,y e G > xy €G
since f is homo = f(xy) = f(x)f(y)
= () t=x"ty ™t
= y—lx—l — x—ly—l
= (y—lx—l)—l — (x—ly—l)—l
= Xy = yx
S.C (&=): Conversely given that G is an abelian.
To prove that f is homo
Letx,yEG=xy€G .~ (x)=x"1(y) =y L and (xy) = (xy)!
Now (xy) = (xy)~!
= y-lx-1
= x~1y-1
=f)f»)
~ f is homo
8.If for a group G,:G — G is given by f(x) = x? is a homomorphism.
P.T G is abelian.
Sol: Given that f:G - G by (x) = x? Vx € G
To prove that G is abelian(i.e.xy = yxV x,y € G)

Letx,ye(G=xy€G
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since f is homo = f(xy) = f()f(y)
= (xy)? = x?y?

= (xy)(xy) = (xx)(yy)

= x(yx)y = x(xy)y

= xy=yx -G isabelian

9. Show that the groups G = ({0,1,2,3}, +4), G* = ({1,—-1,i,—i},") are isomorphic.

Sol: 6 = ({0,1,2,3}, +4) G'=({1,-1,i,—i},")
+4 0 1 2 3 . 1 -1 i | —i
0 0 1 2 3 1 | 1| -1 i | =i
1 1 2 3 0 —1 | 1 1 | —i]| i
2 2 3 0 1 i i | —i | -1] 1
3 3 0 1 ? —i | —i i 1| -1

we have to find an isomorphism f:G — G*

The identity in G is 0 and the identity in G' is 1.
Let (0) = lalso (a) = [(a)]"! Va e G

Define (1) =i

@)= =DI"'=O"=—tand f(2)=-1
[(Q)=CDH=[@] =D =-1]
~0)=1,M)=i,f2)=-1f3)=—i

Leta,be G =a+4bEG

(a+4b) = f(a)f(b)

For example (0+42)= (2) = —land  (0)f(2)=1(-1)= -1
~ fis homo.

f is one — one : dif ferent elements have dif ferent images
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fison—to:Forally € G' so 3 atleast one element x in G such that (x) =y
& f:G - Glis an isomorphism such that (0)=1,(1)=1i,f(2)=-1,f(3) = —i

s Gl

IR

G

TheoremS5: If f is homomorphism from a group G onto a groupG?! with kerf then f is
one-one & kerf = {e}

N.(=):Given that f: G - G' is an isomorphism
To prove that kerf = {e}
Let a € Kerf then (a) = e!
Since f is homo.we have (e) = e
~fla)=f(e)=a=¢e (- fisone—one)
~ kerf = {e}
S.C («=): Conversely given that f is homomorphism from a group G onto a group G*
with kerf = {e}.
To prove that f is one — one
Let a,b € G such that f(a) = f(b)
To prove thata =b
Since f(a) = f(b) = f(@[fB)]™' = fFBIF (D]
= (a)(b71) =e!
= (ab™1) = ¢!
= ab™! € kerf = {e]
=abl=e
=a=5»

~ f is one — one
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Thorem6:The set of all automorphismof a group G froma group G w.r.t
composition mapping is group.
Proof:Let A(G) = {f/f is an isomorphism from G to G}
Let' o 'be the composition of bijection over G
To prove that A(G) is a group when' o'
(i)Closure property:Let f,g € A(G) = f, g are bijection
= gof is also bijection

Leta,be G =abeG
Now gof(ab) = g|f(ab)]

= glf(a)f(b)]

= glf (@]9[f (b)]

= gof(a).gof (b)
. gof is homomorphism = gof € A(G)
(ii)Associative property:We know that composition of a mapping in A(G) is an associative.
(iii)Identity property:Let I: G — G be the identity mapping.
Since I is one — one and on — to and structure is preserving i.e.l € A(G)
Letf € A(G) = f is bijection and f is homo.
we have fol = lof = f = Identity exists in A(G)and it is |
(iv)Inversproperty:Let f € A(G) = fis one — one and on — to
= f~lis also one — one and on — to
we have to show that f~1 is homo.
Let f~Y(a) =al,f~1(b)=b! foral,bt €G
= (al)=a,(b) =b
Now f~1(ab) = f ' (f(a))f(b")

=f(f(a'bh)




= alb?!
= f"'(a).f~1(b)
o f~lis homo
we have f~tof = fof 1 =1
~ f~Llis the inverse of f.
Each element in A(G) has invertiable element

~ A(G) is a group under composition of mapping

Theorem7: If N is a normal subgroup of G and a mapping f:G - v by (x) =Nx Vx €

G then f is on — to homomorphism and kerf = N
Proof: Given that f: G — N by (x) =Nx Vx€G

(i)f is homo:Letx,y€E G = xy €G

f(xy) = Nxy
= Nx.Ny
=ff )
» fis homo

(ii)fison—to:LetNxEN=>xEG

For this x € G,we have f(x) = Nx

VNxENSOEIxEG 3 f(x) = Nx .. fison—to

To prove that kerf = N (i.e.kerf € N and N € kerf)
Letp € Kerf = f(p)=Ne =N
sincep E kerf =>p € G (v kerf € G)

= f(p)=Np

= Ne = Np

= pelEN
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=peEN

~kerf € N - (1)
Nextletq € N
sinceqe N=q€eG (~NoG)
= f(q)=Nq
= f(qQ)=N (+heHHh=H=hH)= q € kerf
~ N C kerf - (2)
From (1) and (2) kerf = N
Fundamental theorem of homomorphism for groups: (first isomorphism theorem)

Statement: If fis homomorphism from a group G onto a group G* with Kerf then Kerf IS

isomorphic to the group G?*
(Or)

Every homomorphic image of a group G is isomorphic to some quotient group of the group
G

Proof: Given that f: G — G is on-to homomorphism.
kerf = {x € G/(x) = el where e! is the identity element in G'}
We know that ker f is a normal subgroup of G, write kerf =K

={Kx/x € G}isa r upunder Kx-Ky = Kxy Kx,Ky €
K

g o v K

This group is called quotient group.

Define: - G' by (Kx) = (x), VKx € X

1) ¥ is well-define and one-one: - Let Kx = Ky € (2 Kx=Ky

Since Kx = Ky © xy ' € K = Kerf (~ Ha = Hb < ab™! € H)
& xy~l € Kerf

e (xy ) =el




& )y ) =el (v fishomo)
= @Mt =et
= OISO =e'f()
= f)=1)
= Y(Kx) = P(Ky)

« 1 is well defined and one — one

ii) ¥ is homomorphism: Let Kx, €

Now Y(Kx - Ky) = Y(Kxy)
= f(xy) (+ f is homo)
=f)f)
= YKy (ky)

=~ 1 is homomorphism
iii) 1 is on-to: - Let y' € G1

Since f isontoso3y €G3 (y)=y?
Forthisye G = ky € = (ky)= () =y!
Thus vyl € G13ky € = (ky)= () =y
= 1 is on-to. Hence 3 is an isomorphism from  to G*ie. =G'

Second isomorphism theorem: -Let N be a normal subgroup of G and H be a subgroup of

G then H N is a normal subgroup of H and HN is a subgroup of G and H H K =

N
HN ={hn/he H,ne N}

Proof: Given that H, N are subgroups of G, clearly H N is a subgroup of H or N
Let neH[IN and heH =neH and neN and heH
s hnh™ e N (Since N=G andheG)

And hnh™* e H (sincene H,heH =nh™" eH,heH =hnh™ e H, H is a subgroup of G)
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And hence hnh™ e HNK  Therefore H( N is a normal subgroup of H.
To prove that HN is a subgroup of G

Let x,x, € HN then x, =hn, X, =h,n,where h,h,eH and n,n,eN
Now xx,* = (hn)(hn,)™

=(hn)(n,'h,")

=hnh," Wheren,=nn,"eN

=hen, ,*
—hhh nht

=hh,n,h™  Sinceh= ,h,*
=hn,e HN  Where n,=h,n,h,"eN as N G

- XX,' € HN = HN s a subgroup of G.

And that N is a normal subgroup of HN so that the quotient group HN ={Nx/xe HN}

Define f:H — "N by f(x) = Nx,vxe H

) f ishomo: Let x,yeHe=xyeH
f(xy) = Nxy = (Nx)(Ny)
=f(x) f(y)
- f ishomo
i) f is on-to: Any element N is of the form Nax,where ac H and xe N

and f(a)=Na= Nax (since N is anormal,a*xae N)
- fison-to

ker f ={x< H / f (x) =the identity in %}

={xe H/Nx=N}
={xeH/xeN}=NNH
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H _HN

Therefore, by the fundamental theorem of homomorphism,

HAK N

Third isomorphism theorem: -Let N and K be normal subgroups of a group G such that
G

N < K .Then % is a normal subgroup of % and N

~

K
N
Proof: -For any Na, and Nbe %where a, beK.
We have (Na)(Nb)™ = (Na)(Nb) = N(ab™) e %
And also (Nx)(Na)(Nx)* = N (xax!) e %,‘v’x cG

K G

"NPN
Now define f :%%% by f(Na)=Ka,VaeG

i) f iswell-define: -Let Na, Nbe%a Na = Nb,va,beG

={Na/Ka=K}
—{Na/aek}=XK
N
Since Na=Nb=ab*eNcK
=ab*ekK

= ka=Kb
= f(Na) = f (Nb)

- T is well-defined
i) f is homo: -Let Na, Nb e % — Nab e%

f (Nab) = Kab = (Ka)(Kb) = f (Na) f (Nb)
- f ishomo

i) f Ison-to: -Let Kae% where aeG




For this aeG = Nae%,we have f(Na)=Ka

VKaegSOEINaega f(Na) = Ka
K N
. f ison-to
ker f ={Nae%/ f (Na) =the identity in %}
={Na/Ka=K}

:{Na/aeK}:g

Therefore, by fundamental theorem of homomorphism N

G

I

z X
=
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UNIT-5: PERMUTATION GROUPS
Permutation : Let S be a finite set containing n distinct elements then there exist a
bijective mapping f:S — S is called as a permutation on S.The number of elements
in S called as dgree of permutation

Notation: Let S be a finite set having n elementsi.e.S = {a4, a,, ...} then the

a a .. a
2

permutation f = (q,) (). f(a,)
i.e.each element in second row is the f image of the elements in first row.
Ex:LetS ={1,23}and f:S - Ssuchthat f(1)=2,f(2)=3,f3) =1

1 2 3 2 . .
then f = ((1) ) (3)) = (21 3 :13) is permutation of degree 3.

Example: S = {1,2} then the permutations are

S—f—»5
' ' s—fF—»s
- %
=~ Total number of distinct permutation of S is 2
Note: Total number of distinct permutation of S in n symbols is n! the set of all
these permutation of degree n form a group under permutation multiplication.
This group is called as symmetric group and it is denoted by S,,.
i.eS, ={f/fis apermutation of degree n}
Ex:S = {1,2,3} be a finite set then find S;

Sol:The number of distinct permutations of degree 3is 3! =6

123 123 123 123 123 12 3,
=, G 3 G 2 PG g PG 5 PG g Prmagrow

under permutation of multiplications.
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Equality of two permutation: Let f and g be two permutation then they are called
equal & f(a) = g(a) Va€eS
i.e.image of every element of S under both f and g are equal.

1 2 3 3 2 1
Example:f=(3 ) 1) andg=(1 2 3)

Here (1) =3 = (1)
(2)=2=(2)
B)=1=(3)

Identity permutation: A permutation f is said to be identity permutation of S

. 3 L, 010y . Ay 12 .. n
if (a)=a ‘v’aESEx.I—(ala2 an) or (12___ n)

Product of permutations (or)multiplication of permutations:
Let S ={a4,,,...a,} be a finite set containing n distinct elements.

a,a, .. a, b, b, .. bn -
Let f = (bi b; bn) and g = (Cll sz Cn) be two permutations of degreen

then the product of two permutations is also a composition of permutations

i.e.(gof)(x) = gof (x) = glf (x)]

_(biby . by, MOz e Qpy _ Q1 Gp . Gy
'gof - (Ci C; Cn) (bl b2 bn) o (Cll CZZ %

2 2 .
Ex:1.f = (% 3 i) and g = (% 1 :2)’) then find fg and gf

solif=C % 3andg=( % 3

2 3 1 3 1 2

(1 2 3yl 2 3y—(1 2 3 _ 1 2 3y¢1 2 3y_(1 2 3
f9=G 3 PG | =G 5, P 9= 126G 3 P=G 5 3P
~fg=9f

123 4. 12 3 45 6 7

2.Compute (3 , 4 PO0(3 6 2 5 1 7 4
. 12 3 4,,1 2 3 456 7,_ 123 456 7
GG 24 179G 625172 G 62537




91

3.5={1,2,3,4,5,6}and f =(236),g=(146) find fg and gf

1 2 3 45 6,,1 2 3 4 5 6

Sol:fg=Q@236)A46)=( 3 ¢ 4 5 PG 2 3 6 5 1

123 45 6, _
=( 3 6 2 5 ()=(14236)
9f =(146)236)=(;, , 3 ¢ 5 PG 3 6 4 5
123 45 ¢
=G 316 5 p=(14623)

Cyclic permutation: Consider a set S = {aq, a,, ...} and

a az ... Ag4+1 .-

an. . .
= Cayaz ..ay Qpayq - an) is a permutation of degreen then (a,) = a,,

(az) = as, ... (ar) = a1, f(Ak+1) = At - f(@n) = an
This type of permutation f is called as cyclic permutation of length k and degree n.

It is denoted by (ay a, ...ay) or (a; asz ...ay a)

2 3 4 5 ¢

) _ 1
Ex.l.f—(4 12 3 5 ¢

) be a permutation then f is a cyclic permutation

i.e.f =(1432)isacyclic permutation of length 4 of degree 6

2.f = (411 i ; ;L 2 g) = (143 2)(56) is not a cyclic permutation.
1 2 3 45 6 7 g, . .
3.Express f = (2 4 6 73 1 5 8) in cyclic form.
r_1 2 3 45 6 7 g\_
Sol.f—(2 4 6 7 3 1 5 8)—(1247536)

Length of cycle:The number of elements in cycle is called as length of cycle.
Ex:f =(12345)thenlengthof fis5
If length of cycleis"r "then it is called r — cycle. Above example is 5 — cycle

Note: 1. A cycle of length 1 is called as Identity permutation.
1,2,.. n
Exif = (57w =0@®)..(m)

2.Alength of cycle is called order of cycle




Ex:f =(1234)then(f) =4

3.Inverse of acycle:Let f =(1234)thenf~1=(4321)

2.Writedowntheinverseoff=(; g i ; i)
. . 12 3 4 5 ,_.53 42 1, .12 3 4 5
@D f=( 34 2 P20 234 595G 4 2 37

Disjoint cycles: Let S = {a4, ,, ...a,} be a finite set.

Two cycles f and g are said to be disjoint cycles if they have no common elements
Ex:Let S ={1,2,3,4,5,6}and f = (135) g = (246)aredisjoint cycles and
f=(1354)and g = (24 6) are not disjont cycles.

Product of disjoint cycles are commutes: Letf, g are disjoint cycles

then they have no common elements.

(@) # a then(a) = a = (fg)(a) = flg(@)] = f(@)= fg =f = (1)

Next (a) = athen (a) # a = (gf)(a) = glf(a)] = f(a) = gf = f - (2)

~fg=9f

Ex:LetS ={1,2,3,4,5,6}and f = (135) g = (246) aredisjoint cycles then

12345 g1 2345, 12345 ¢
f9=G 25 41 G 4365 P2 G 4561 P
12345 g 12345 ¢ 12345 g
=G 4365 PG 25421 95G 4561 P
~fg=9f

Note: Every permutation can be expressed as the product of disjoint cycles

123 45 g

Ex:Letf=(6 5 4 3 1 »

) thenf =(1625)(34)

1.Write down the product of disjoint cycles

1 2 3 45 6 7

OA3DE6NEEDNHS)=( 7 3 ¢ 4 3 ¢

)=(1)(275463)
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3 45 6 7.
4 6 7 3 D=01257)(346)

(62 B NS

() (136)A357)(67)(1234) = (;

(iii))(45)(123)321)(54)(26)(14)=(26)(14)

Order of a permutation: Let S,, be a permutation group on a set S.If f € S, suchthat
f™ =1 wherel is the identity pemutation and n is a least positive integer

then the order of a permutationisn

Note: A permtation can be exprssed as K — disjoint cycles whose lengths are

My, My, ...M,, then order of the permutationis L.C.M of { 1, M,, ... M,.}

1 2 3 4 5 ¢

Exiletf== (5 ¢ 4 3 1 5

) thenf =(1625)(34)

~0(f)=L.C.{42} =4
, . 1 2 3 4 5 6 7.
1.Find the order of the permutation (4 312 6 7 5) inS;
. 1 2 3 45 6 7, _ _ _
Sol.leen(4 312 6 7 5)—(1423)(567)—L.C.{3,4}—12
2.Find the order of f =(1357)(234)(1235)

Sol:f =(1357)(234)(1235) - These are not disjoint cycles

4 5 6 7
2

3 6 P=U53NCH=LC24=4

_ .1 2 3
N (5 4 7
Transposition:.A cycle of length 2 is called as transposition
Ex:f = (24),(ij) both are transpositions.”

Note: 1.0rder of every tranposition is 2 = Every transposition is self inverse

2.Every permutation can be expressed as a product of transposition.

Letacycle (1,a2,a3,...an-1,a, ) = (a1 az)(a; az)(a; as) ... (a1 a,—1)(a; a,)

12 3 456 7

Exif=(, 3 1 2 ¢ 7 o =1423)(567)=01H12)(13)(56)(57)

0(f) = L.C.{3,4} = 12

Inversion: Let f be a permutation then the pair (i,j) 0<i <j <nisaninversion




for fif f(D>f()

12345 ¢
Exf=G 1 2 4 ¢ ¢

Herel<2but(1)>2)=3>1

Herel1 <3but(1)>(3)=3>2

Here 1 < 4 but (1) < (4) = 3 < 4 this not a inversion pair

Here5< 6but(5)>(6) =6>5

Then the pair (1 2),(1 3) are called inversion

Signature:The total number of such inversion for the permutation f is called

signature and it is denoted by Sig f.

1 2 3 4 5
Letf=f=<z4136§)

Here the iversion pairs are (1 3),(2 3),(24),(5 6)so Sig f = 4

an . . .
Inverse permutation:If f = (%11 1?22 b ) is a permutation then inverse
b1 bz bn) here f 1 is also bijective.
permutation of fis f~1 = ( a an
1 2 aen
CFf ==

Ex:If f =(2341)of degree5 then find f~!
Sol:f=(2341) = f1=(1432)

2.Write down the inverse of the following permutations

B 2 3 4 5 ... 4231
Wf=G 3 4 2 PW=G 4 1 3
. 123 45 L _ 2 3 4 2 1 12 3 45
Of=G 374 2 P=27=G 32 34 9G4 2 3 ¢
402 3 1 L2 413, _ 12 3 4
We=0G 4 1 979 =G 2 3 DG 4 1

3.Express the product (254)(14 3)(2 1)as a product of disjoint cycles

and find its inverse.
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Sol:Given (254)(143)(2 1) = (é g i g D =01543)(2)
- 12 3 4
Sf1=G45D=(G 5 4 5 D
4.Express the f = (?1, i ; i 2 g) as a product of transpositions.

1 i 2 5=13n66=031DGE)

Of=G 2 46 .

(ii)f =(123456) = (16)(15)(14)(13)(12)

Even and odd permutation: A permutation f is called even (odd) permutation if
the total number of transposition are even(odd) .

Ex:Letf =(1234567)=(12)(13)(14)(15)(16)(17) = 6 (transposition)

Even transposition = Even permutation

Note: 1. A cycle of lengthn is called even pemutation(odd) if nis odd(even)

:() 3 —cycle is even pemutationi.e.f = (123)=(12)(13)

= Even number of transposition

(ii) 4 — cycle is odd permutation.i.e.f = (1234)=(12)(13)(14)

= odd number of transposition

2.Every transposition is an odd permutation.: (2 4), (5 6) are odd permutation.

3.The identity permutation is always even permutation because I can be expressed

1 2

as a product of 2 transposition.: (12)(21) = (1 2),

aaenevad=¢ 5 H

4.The product of two odd permutation is even.Ex: (12)(3 4)

5.The product of two even permutation is even.

1 2 3 4 5

Ex:f=(123), =345 thenfg=(," 3 , ¢ ;

)=(12345)




6.The product of even and odd permutation is odd.
Ex:f =(123)—>evenand g = (1234) - odd
thenfg=(123)(1234)=(1342) - odd

7.The inverse of odd permutation is odd

8.The inverse of even permutation is even

1. Examine weather the following permutation are even or odd?

OF=G 5 3 & ¢ 9 D=034567)=ANAOAHAH(13)

= 5 transposition

=~ f is odd permutation.

1 2 3 4

N 5 6 7
Wf=G 3 1 8 5 6 2

2) =(1723)(48)=(17)(12)(13)(48)
= 4 tranposition - f is even permutation.

(i) f = (12345)(123)(45) = (%

N W

i ‘1* g)=(1324)=(14)(12)(13)

= 3 transposition - f is odd permutation

Theoreml:Let S, be the permutation set of degree n of order n! form a finite
group under product of permutation.If n < 2 then S,is abelian group and
ifn>3thenS, is non — abelian group.

Proof:LetS = {ay,ay, ...} be a finite set containing n distinct elements

~ S, ={f/f is a permutation of degree n}

To prove that S,, is a group under product of permutation.

. b,
(i)Closure property: Let f = (%i gg g;l) and g = (lgi ?; cn) be two
. a1 az an € S
permutations of degree nthen gof = (. . ) n
1 2 Lrn) Cn
by b, ... by

. a a ... a,
(ii)Associative property: Let f = (, b, p ) and g =( )
1 s n

1 CZ cn
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_ GG MY b three permutations of degree n
h=C4d, .. d, P / deg

a, a, .. a, a; az ... 0Qy
Now h(gof) = (d1 16122___ dn) and (hog)of = (d11 d22 dn)

= ho(gof) = (hog)of
a,a, .. 4 .
(iii)Identity permutation: Let I = (ai Clz an) be a permutation of degree n
. a,

a, a; .. %n .
Letf = (b1 b bn) be a permutation of Sn

a, ay .. Qp_ 10z .. a, a, a, ... n _
fOI - (bl bz bn) (al az .. an) - (bl b2 bn) f

a
A1 dz - "™y s the identity permutation of degree n.
aa, .. a,

alsolof =f ~ 1= (
(iv)Inverse property: Letf € S, = f is bijective = f~!is bijective sof "' € S,
fof~=Tlorftof =1

~ f~Lis the inverse of f

Every permutation inS, has invertiable permutation -. S, is a group of order n!
Ifn=1then(S,)=1'=1

i.e.Every group of order 1 is always abelian.

Ifn=2then(S,)=2!=2

=~ Every group of order 2 is always abelian

123... n—1n 123.. n—1n

Ifn23thenf=(234___ n 1)9:(213... n—1n)

_123.. n _(123.. n
f9=G5yr Pandgf =G50 )

~ fg # gf = S, isnon— abelian group if n > 3

n!
Theorem?2: Let S,, be a permutation group of degree n then of n! elements in?
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n!
elements are even permutation and > elements are odd perutation of degree n.

Proof:Given that S,, is a permutation group of degreen of order n!
i.e.S, = {e1,2 ...€p, 01,02 ...04} is a permutation group of degreen
(Sn) =nlhere ey, ey, ...e, are even permutation of degree n.

and 04,2, ...04 are odd permutation of degree n.

~p+q=n!

Since every permutation in S,, is either even or odd but not both.
Lett € S,, whre t is a transposition.

Since S, is a permutation group.

By closure property:tey, tey, ...te,, toy,toy, ...tog € S,

Since t is odd permutation and e, ,, ... e, are even permutation

- tey, tey, ... te, are p odd permutations.

If possible suppose that te;= tel_ =e; = €

which is a contraduct to p even permutation - te; # te]_

- teq, tey, ... te, are p odd permutations

“p<q-Q1) (S, contains exactly q odd permutations)
similarly we can prove that toq, to,, ... are q distinct even permutations

~q<p-(2) (+ S,, contains exactly p even permutations)

From (1) (2) p=gq

n!
Sincept+q=nl=p+p=nl=2p=nl=p=__
2
n!
- = = —
p=q >
n!
.'.q:—
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n! n!
~ Every permutaion group S, contains > even permutations and > odd permutations

Alternating set: Let S,, be a permutation group of order nl.The set of all even permutation

is called as alternating set and it is denoted by A,

n!

Theorem3:The alternating set A, form a group of order? under product of

permutation.

Proof: A, = {f/f is an even permutation of degree n}

To prove that A,, is a group under product of permutation.

(i)Closure property:Let f,g € A, = fand g are even permutation

.The product of two even permutation is also even permutation. .. fg € A,
(ii)Associative property: Since permutation is a mapping and hence product of
permutation is always associative.i.e.(fog)oh = fo(goh) Vf,g,h € A,
(iii)Identity property:Let I € A,, = I is an even permutation.

we know that every identity permutation is always even permutation.

Let f € A, = f is even permutation - fol = f = lof

(iv)Inverse property:Let f € A,, = f is even permutation

We know that the inverse of even permutation is also even permutation... f = € A,

“fof '=I1=f"lof Vf€A,

n!
= The alternating set A,, form a group of order _ under product of permutation
2

Theorem4:The alternating group A, is a normal subgroup of S,
proof:S, = {f/f is a permutation of degree n} is group of order n!

n!
A, ={f/f is an even permutation of degree n}is a group of order?

To prove that A,, is a normal subgroup of S,

(DA, # ¢, A, S, (ii) Let f,g € A, = f and g are even permutation
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= f,"led,= fg €A, A,isasbgroup of S,

(iii)Letf € S,and g € A, since f € S,, = f is either even or odd
Case(i)If f is even

Since f is even = f~lis also even. f is even, is even = fg is also even
~ fgis even,lis even = fgflisalsoeven .. fgf 1 €A,
Case(ii)If fis odd

Since f is odd = f~lis also odd. f is odd, g is even = fg is odd

s fgisodd, tis odd = fgflisalsoeven . fgf 1 € A,
VfeES,VgEA,= fgfleA,

~ A, is anormal subgroup of S,

Theoremb5: For any n > 1 the set of all even permutaion in S,, is a normal

n
subgroup of S, and order of A, is__ and the index of A,,in S, is 2

Proof:Letn > 1and A, = {f € S,,/f is an even permutation of degree n}
we know that G = {1, —1} is a group under multiplication and 1 is the identity of G.

Define ¢:S,, = G by (f) = {_1,1’ i?][iissoe;;n

we prove that ¢:S, = G is on — to homomorphism with A,, as kernel
Case(i) Let f,g are even = fg is also even

~(H=L@=1g =1

N@=11=1= (fg)

Case(ii) Let f,g are odd = fg is also even
~(H=-L0@=-L¢(fg)=1

N@=EDED =1 = ¢(fg)

Case(iii) Let f is even, g are odd = fg is odd

~(N=10@=-1L(g=-1
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N@=1-D=-1= (fg)

Case(iv) Let fis odd, g is even = fg is odd
~(H=-L0=1¢(fg=-1

N@=CED.1=-1= (fg)

In all above cases ¢(fg) = d(f)p(g) = ¢ is homomorphism

Since n > 1, he transposition (1 2) in S, is odd permutation and hence
(12) = —1 This shows that ¢ is on — to

kerp = {f € S,,/d(f) = identity element in G}

={fes./(f)=1}

={f €S,/f is even}

= The set of all even permutations

=4,

By fundamental theorem of isomorphism,kj—rnd) =6 = ﬁ—: =G=o0 (i—n) = 0(G)
=0 (2—= 2= (Sz))—jz = 0(4,) = 0(57%0(1471) = n n

Cayley stheorem 6: Every finite group is isomorphic to some permutation group
(OR)

Prove that a permutation group is isomorphic to a group on suitable finite set

Proof:Let G be a finite group and a € G.

Define f,:G - G by f,(x) =ax Vx€E€G

(i) f,is well — define and one — one:

G G
Letx,yeG=>x=Yy f.
X a [ jax
sincex=y & ax =ay Va€eG
e () =f.(y)
S \-.__/




~ [, is well defined and one — one
(ii)fq is on — to:
Lety € G (co — domain)
sincea € G,yEG=alyeG
s fal@y)=(aly) =y
VvyeGsodalyeG af,(aly)=y
~ f, is on — to and hence f, is a permutation.
Write Gt = {f, € G/a € G}
= The set of all permutations of G corresponding to every element of G
To prove that G' is a group under product of permutation.
(i)Closure property:L ,f_ €G!
sincea,b e Gandx € G
fufy ) = f1f, ()]
= f, (bx)
= a(bx)
= (ab)x
= f,0 €G!
L= fEECT =L =f €6 = (D)
(ii)Associative property:L ,fa, beCG1
Now (f £.)f = (f »)f
= f(ab)c
= fa(bc)
= fa(foc)
= fa (/)

(iii)Identity property:sincee € G = f, € G!
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Letf, € G Now fofe = fae = fa

similarly f.f, = fea = fa

(iv)Inverse property:Let f, e Gl > a€G=a '€ G = f,-1 €G!
Now fof o1 = faa—1 = fe similarly fo-1fo = fo1a = fe

G' is a permutation group.

Define ¢:G » G' by (a)=f , Va€G

(i)¢ is well define and one — one:

Leta,b € G suchthata = b

sincea=b e ax =bx VX€EG
& f,(x) = f,(x)
Sfo=1h

S ¢p(a) = o(b)
(ii)¢p is homo:Leta,b € G = ab € G

Now ¢(ab) = f
= fuf,
= ¢(a)¢p(b)
s ¢ is homo
(ii)¢p is on — to:
Letf €G'=bE€EG
Forthis b € G,we have ¢(b) = f,
ThusVf, € G'so3b € G suchthat (b) =f

~ Every finite group is isomorphic to some permutation group

103




104

Problems:

1.Find the permutation group is isomorphic to the multiplicative group
G = {1, w,w?}

Sol: Given that G = {1, w, w?}

By using Cayley's theorem, considerf,:G — G by f,(x)=ax Va€G

and x is any element of G

~ f, is a permutation

The permutation groupis G* = { | , f.2}

2 2 2

_r1 w w 1 w w 1 w w

where f, = = = =
h (1.1 1.w 1.a)2) (1 ) wz) fo (w.l W.w w.wz)

1 o w?
(w w2 1)

1 ) 2 1 2
f“’z (.wzl w?. w wz.wz) (a)z 1 a))

2. Find the permutation group is isomorphic to the multiplicative group
G=1{1-1,i,—i}

Sol:Given thatG = {1,-1,,—i}

By using Cayleys theorem, considerfe:G - G by fa(x)=ax Va€G

and x is any element of G

~ fais a permutation

The permutation groupis G' = { } ., f :}

1 -1 i 1 1 4
where fl = (11 1(-1) i L)Y =4 1 —

1 -1 i i 1 _
fa=Cy1 —1-D -1 —1= =G 1 S

1 -1 i 1 -1 i —i
i=G1 (=1 i i.(l—i)):(i —i i1 11)

1 -1 i —i 1 -1 i —i
ff=001 —(=1) —ii —i.l(—i)):(—i i 1l —11)




3.Find Az is anormal subgroup of S;

Sol:Given S = {1,2,3}

—_
N
w
—_
N
w
—_
N
w
U
N
w

_1 2 3 1 23
5= 3 9G53 G 2 G 1 PG 5 G g

Az = The set of even permtation

fi= (1 ; g) = |dentity permutation so this is even

4 2 3 (2 3) » This transposition so it is odd
27 M 3 2
_ A 2 3, _
=G 2 3H=013)-odd
1 2 3.
fa=(G ] P=Q102)) > odd
1 2 3 _ _ _ e ..
fi = (2 3 1) =(123)=(12)(13) =2 transposition so this is even
f, = (é i ;) = (132)=(13)(12)=2transposition so this is even

As={ ,f .f kis anormal subgroup ofSs3
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CYCLIC GROUPS
Cyclic group: Let (G,") be a group and a € G then G = {a"/n € Z} is called as cyclic
group generated by 'a’and is denoted by G =< a > or (a)
Note: When we have taken addition G = {na/n € Z} is a cyclic group generated by 'a’
Ex: 1. P.T G = {1,—1} is a cyclic group under multiplication.
Sol: Given that G = {1,—1}
Leta=1 Nowl1l=1,(1) # —1foranyn € Z= a = 1isnot a generator of G
Leta=-1 (—1D'=-1,(-1)2=1 = a=—1is agenerator of G
G =<-1>= Gisacyclic group
2.P.T G ={1,w,w?}is a cyclic group under multiplication.
Sol: Given that G = {1, w,?}
Leta=1 Nowll'=1,(1) # w,w? foranyn € Z = a = 1is not a generator of G
Leta=w (0)'=w,(0)?=w?W)?®=1=a=wis agenerator of G
Leta = w?> (0?)!'=w? (w?)?=w,(w?)®=1 = a=w?is agenerator of G
ZG=<w> and < w? >= G is acyclic group
3.P.T G ={1,—-1,,—i}is a cyclic group under multiplication.
Sol: Given that G = {1,—-1,,—i}
Leta=1 Nowll=1,(1) # —1,,—i foranyn € Z= a = 1 is not a generator of G
Leta=—-1 (=1)'=-1,(-1)2=1,(=1)" # i, —i
= a = —1is not a generator of G
Leta=i ()'=i{)?=-1,0)3=-i,()*=1=a=1iis ageneratorof G
Leta=—i (=i)'=—i(=)%=-1,(=)3=i(-)*=1
= a = —iis a generator of G
~G=<i> and < —i >= G is a cyclic group

4. P.T the nt" roots of unity is a cyclic group under multiplication.




2kmi 2mi
Sol:Let G ={e n /k=012,..(n—1)} wherew =ensoG = {l,w,w?..0" 1}

Leta=w Now()!=ow, (w)?=w? (0)=w?.(w)1= !

= a=wis a generator of G .i.e.G =< w >

~ G is a cyclic group.

Hence the n*" roots of unity is a cyclic group under multiplication
58TZs=1{0,1,2,3,4,5} is a cyclic group of order 6 under +¢

Sol: Zg = {0,1,2,3,4,5}

Leta=1 G ={0(1),1(1),2(1),3(1),4(1),5(1)} = {0,1,2,3,4,5}

~ G =<1>= Gisacyclic group

Leta=5 G = {0(5),1(5),2(5),3(5),4(5),5(5} ={0,5,4,3,2,1}

~ G =<5>= (Gisacyclic group

6. P.T (Z,+) have only two generators (OR) P.T (Z,+) is a cyclic group
Sol:LetZ ={...— 3,-2,—-1,0,1,2,3 ....} clearly (Z,+) is a group

Leta = 1then{..—3(1),—-2(1),—-1(1),0(1),1(1),2(1),3(1) .... }
={..—3,-2,-10123...} =Z ~Z=<1>= Zisacyclic group

Also — 1is the additive inverse of 1 ~ Z =< —1 > = Zis a cyclic group

~1,—1 are the generators of (Z,+)

S.No Infinite cyclic groups Generators
1 (Z,+) 1,-1
2 (2Z,+) 2,—2
3 (nZ,+) n,—n
4 G ={a"/neL} o
a
5 G={2"/neZ} 2 -
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Theoreml:If a'is a generator of a cyclic group then a™!is also generator
of cyclic group
(OR)
If G=<a> thenP.TG =<a'>
Proof:Let G =< a > be a cyclic group generated by’ a’
i.e.G ={a"/n€ZL} Leta” € G wherer €L
Nowa” = (a )" where —r € L
=6=<al>
~a lisagenerator of G
Theorem?2: Any infinite cyclic group G has exactly two generators
Proof:Let G be an ifinite cyclic group generated by a.Thus (a) = 0 or
G =<a>={a"/n € Z}
Let a™ be a genrator of G since a € G so 3 p € Z such that(a™)? = a
= a™ l=e= (a)=mp -1
[p—1>0thendq=mp—1 3a? =e = G is finite |
~Gisinfinitesomp—1=0=mp=1=m==11lorp=+1
~ G has exactly two generators
Theorem3: Every cyclic group is always an abelian.Is the converse true? justify
your answer
Proof:Let G =< a > be a cyclic group generated by a
i.e.G ={a"/n€Z}Letx,y € Gthenx =a",y = a® wherer,s €L
Now xy =a"a’* = a™* =a’"" =a’a” = yx
xy=yx Vx,y €G - Gisan abelian group

The converse of the theorem need not be true




i.e.Every abelian group need not be a cyclic group.
Ex: G ={e,a,b,c}is an abelian group undermultiplication
Now (i)(e)l =e,(e)?=e..(e)"=e

= e is not a generator of G

(iD(@'=a, ()’ =¢e,(a)]=a,()*=¢(a)’ =a..
= a is not a generator of G

(iid)(b)r = b, (b)? =¢,(b)> =b,(b)* =e,(b)° =b ...
= b is not a generator of G
(iM)'=c()?=¢()P=c()*=e()=c..
= c is not a generator of G

~ G isnot a cyclic group

Hence every abelian group need not be a cyclic group
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; _ R 0 1, _ 1 ) _ 0
Consider G = {A = [0 1],B— [_1 O]’ = [_0 1],D— [1
Clearly is G an Abelian group w.r.t matrix multiplication.

0 1 0 1 0 1 -1 0
- 2 _ [~ I=1 41=C
B=[, J2=0, I, 0 -1
0O 1 -1 0
3 — 2 — .
B = BB —[_1 0][0 1]—D
-1 0 -1 0 1 0
4 _ p2 2 — — —
BE=BE =1y _qllg 4=l 41=4

G =< B >= G isacyclic group

Theorem4: Let G be a finite cyclic group of order n.Then forany1 <m < n,

a™ is a generator of G < misrelatively primeton.(i.e(mn) =1)

Proof:Giventhat G =<a > and o(a) = |G| =n.
Forany b € G,we have < b >C G =< a > and hence

G=<}b>=<a>c<b>=a€e<b>




~ bis a generator of G & a = b’ for some integer s.
Now, us fix 1 <m < n.Then
a™ is a generator of G < a = (a™)° for some s €L
S a™t=e forsome s €
< (a)lms—1
< nims —1
< ms—1=nt forsome tEZL
< ms—nt=1forsome t €L
< m s relatively prime ton.(i.e (m,n) = 1)
Theorem5: A cyclic group of order 'n'has exactly ¢(n)generators
Proof: we know that G =< a™ > (m,) =1
= a™ is the generator of G < m is a positive integer lessthan n and
which is relatively prime ton
The number of generators in G < The number of positive integers less than n and
which are relatively prime ton & ¢(n)
~ A cyclic group of order 'n'has exactly ¢p(n)generators
Eulerd function: Euler ¢ function is a function ¢:N — N defined as follows
O @=1(G)rn(>1)€EN
¢(n) = The number of positive integers less than n and which are relatively
primeton
Note: 1.If G is a cyclic group thenn = p, 'p,* ...p, " where py,, ...py are primes

and 1 < p; <py <+ < pyg, ay, 2, --- Q) are positive integers then
m)=n(1 —1}(1 1) 1 1)
n)=n(l- -——)..(1——

b1 D2 Pk

2.Further n = p*where p is a prime and less than n then
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1 p—1
(n)=n(- )Z;=P“( —p}=p“‘1(p—1)

1 -1
3.1f pisaprimethen(n)=n (1 - )z;=p(pﬂp—=p—1

1. Find the number of generators of a cyclic group of order 10

Sol:n =10 then (10) =? n=10=2x5=21 x5!

M=nl-—01- J)=¢10=1001- )1~ =10() () =4

-~ (10)=4 Generators are a',a3,”, a’

2.Find the number of generators of a cyclic group of order 5,6,8,12,15,36,60,72,100,256 ?

Sol:n =75 - prime then (5)=5—-1=4

(in=6=2x3=2'x3"=(0=6(1-,)A-I=6(,)(;) =2
(in=8=2"= (8)=8(1~ ) =8()) =4
(iv)n = 100 = 10 x 10 = 2% x 52 = (100) = 100 (1 ~ ) (1 = ) = 100 () () = 40

(iii)n = 256 = 2° = (256) = 256 (1 — 3= 256 () = 128

Theorem6: Every subgroup of a cyclic group is cyclic

Proof:Let G =< a > be a cyclic group generated by 'a’i.e.G = {a™/n € 7}
Let H be a subgroup of G

To prove that H is a cyclic group

Since H € G = Every element of H is an element of G

Thus it follows that a™ € H for somen € Z

Let 'd be a least positive integer such that a® € H

To prove that H is a generated by a® (i.e.H =< a >)

Leta™ be the generator of H forsomem € Z




By division algorithm so 3 q,r €€ Z suchthatm = dq +r where0 <r <d
Now a™ = q%1*" = (a%)a”

sincca® € Ha*eH =a% € H=a % e€H

By closure propertya™ € H,a %1 € H = a™a %9 € H = a%a"a % € H
= a” € H where0 <r <d

If 0<r<dthena” € H whichis a contraduct to a® is least

~r=20

a™ = qd4+0 = (ad)

which impies that every element in H is of the form (a%)4

~ H=<a®> Hence H is a cyclic group.

Theorem7: Every subgroup of a cyclic group is a normal subgroup
proof:1.Every subgroup of a cyclic group is cyclic

2.Every cyclic group is always abelian

3.Every subgroup of an abelian group is a normal subgroup
Proof1:Let G =< a > be acyclic group generated by 'a’i.e.G = {a"/n € 7}
Let H be a subgroup of G

To prove that H is a cyclic group

Since H € G = Every element of H is an element of G

Thus it follows that a™ € H for somen € Z

Let 'd be a least positive integer such that a® € H

To prove that H is a generated by a® (i.e.H =< a >)

Leta™ be the generator of H forsomem € Z

By division algorithm so 3 q,r €€ Z suchthatm = dq + r where0 <r <d
Now a™ = a4a*" = (a%)%a”

sincca"€H,a*€eH =qaq€eH =a%€e€H
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By closure propertya™ € H,a™%1 € H = a™a %9 € H = a%a"a "% € H

= a” € H where0 <r <d

If 0<r<dthena” € H whichis a contraduct to a® is least

~r=20

a™ = q49+0 = (ad)

which implies that every element in H is of the form (a%)?

~ H=<a® > Hence H is a cyclic group.

Proof2:Let G =< a > be a cyclic group generated by a

i.e.G ={a"/n€Z} Letx,y € Gthenx =a",y = a®* wherer,s € L

Nowxy =a"a’ = a™* =a’"" =a’a” = yx

Xy =yx Vx,y€G -~ Gisabelian group

Proof3: Let G be an abelian group and H be a subgroup

To prove that H is a normal subgroup of G (i.e.vh € H,Vx € G = xhx~! € H)

LetheH, xeEG

xhx1=(x"1h) (+x€EG=x1€GheEH=heG= x"1h=hx"1, is abelian)
= (xx YHh
= eh
=h€eH
xhx~' € H H isanormal subgroup of G

Theorem8: Evey quotient group of a cyclic group is also a cyclic group

Proof:Let G =< a > be a cyclic group generated by 'a’

i.e.G ={a*/n e}

Let N be a subgroup of G

since G is cyclic and hence N is abelan (+ Every cyclic group is always abelian)

~ N is anormal subgroup of G ( Every subgrop of an abelian is a normal subgroup )




G _ _ G
—={Na/a € G} is a quoti nt groupu d r a-Nb=Nab VNa, b€

N
e neN

G
To prove that N is a cyclic group

G G
i.e.==<Na> (i.e.-E<Na> ,<Na>C—)

N N

=2l

c
LetaEG:NaEN$<Na>EN$<Na>_N—>(1)

LetNxENﬁxEGﬁx=apwherepEZ

Nx = Na? = Na-Na-Na-..Na(p times)
= (Na)? €< Na >

= Nx €< Na >

-'-N§< Na > - (2)

F(1)and (Z)N =< Na >

N is a cyclic group

Theorem9: Every group of prime order is a cyclic.Is the converse true?

justify your answer?

Proof:Let G be a group such that o(G) = p where p is a prime
Let G be contains at least two elements, ce 2 is the least positive prime number.
Let 'a’be any element of G which is not an identity element ((e) = 1)

~ (a) = 2 Let (a) = m = a™ = e where m is the least positive integer

~mz=2

Let H =< a > is acyclic subgroup of G

i.e.H={a"/meZ}={a',?ad ..a™a*"..} ={a',a? a3 ..a™ = e}

o(H) =m=o(a)
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By Lagranges theorem o(H)|o(G) = m|p

since p is a prime and m > 2

~m=p= o(H) =0(G)

= H =G = G isacyclic

~ Every group of prime order is a cyclic

The converse of above theorem need not be true

i.e.Every cyclic group of order need ot be prime

For example G = {1,—1,i,—i}is a cyclic group of order 4 but 4 is not a prime.
Theorem10: Every group of prime order is abelian

Proof: First we prove that 1. Every group of prime order is a cyclic
2.Every cyclic group is always abelian

Proof1:Let G be a group such that o(G) = p where p is a prime

Let G be contains at least two elements, ce 2 is the least positive prime number.
Let 'a’be any element of G which is not an identity element ((e) = 1)
~(a) =22 Let (a)=m = a™ = e wheremis the least positive integer
cmz=2

Let H =< a > is acyclic subgroup of G
i.e.H={am/meZ}={a',?ad ..a™a*™..} ={a',a? a3, ..a™ = e}
o(H) =m=o(a)

By Lagranges theorem o(H)|o(G) = m|p

sincepis aprime and m = 2

~m=p= o(H) =0(G)

= H =G = Gisacyclic

~ Every group of prime order is a cyclic

Proof2:Let G =< a > be a cyclic group generated by a
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i.e.G ={a"/n€Z}Letx,y € Gthenx =a",y = a* wherer,s €L

Now xy = a"a® = a"* =a’™" =a’a” = yx

xy=yx Vx,y €G- Gisanabelian group

Theorem11: Any infinite cyclic group is isomorphic to the additive group of integer.
proof:Let G be an infinte group generated by’ a'.

Thus (a) =0or xanda® =e

.~ G ={a"/n € Z} and let (Z,+)be group under addition.

Define f:G » Z by f(a™)=n Va" €G

fis1—1:Leta',a/ € G 3 f(a') = f(a))

Since f(a)) = f(a)) =i=j=a' =da

fison—to:Letk €Z

~ak € Gand f(ak) =k

fis homo:Leta',a’ € G = a‘al €G

Now f(a'a’) = f(a'") =i+ j = f(a’) + f(a))

~ fis an isomorphism from G to Z

Theorem12: Every finite cyclic group G of order nis isomorphic to group (Z,, +,)
Proof:Let G be a finite cyclic group of order n generated by a.so o(a) =n
G={a’=¢e1,a? ..a" 1}

~G={am"/me€ Zand 0 <m < n}

Z, =1{01,2,..n — 1} is a group under +,

Define f:G - Z, by f(a™)=m Va™€eG

fis1—1:Leta‘,a’ € G 3 f(a") = f(a))

Since f(a) =f(d)) =>i=j=a =a

fison—to:Letk €Z




~ak € Gand f(ak) =k

fis homo:Leta',a’ €G = a'al €G = a't €G

By division algorithm 3q,r €Z 3i+j=nq+r where 0<r<n
aitl = qna+r = ()4 = ela’ = a’

f@'d) = f(a) = f(a") =7 = f(a)+.f(a))

~ fis anisomorphism from G to Z,
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